Skip to main content Accessibility help
×
Home

Effect of the Quantum Size Effect on the Performance of Solar Cells with a Silicon Nanowire Array Embedded in SiO2

Published online by Cambridge University Press:  13 June 2012

Yasuyoshi Kurokawa
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1-S9-10 O-okayama, Meguro-ku, Tokyo 152-8552, Japan PRESTO, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
Shinya Kato
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1-S9-10 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
Yuya Watanabe
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1-S9-10 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
Akira Yamada
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1-S9-10 O-okayama, Meguro-ku, Tokyo 152-8552, Japan Photovoltaics Research Center (PVREC), Tokyo Institute of Technology, 2-12-1-S9-10 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
Makoto Konagai
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1-S9-10 O-okayama, Meguro-ku, Tokyo 152-8552, Japan Photovoltaics Research Center (PVREC), Tokyo Institute of Technology, 2-12-1-S9-10 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
Yoshimi Ohta
Affiliation:
Advanced Materials Laboratory, Nissan Research Center, 1 Natsushima-cho, Yokosuka-shi, Kanagawa 237-8523, Japan
Yusuke Niwa
Affiliation:
Advanced Materials Laboratory, Nissan Research Center, 1 Natsushima-cho, Yokosuka-shi, Kanagawa 237-8523, Japan
Masaki Hirota
Affiliation:
Advanced Materials Laboratory, Nissan Research Center, 1 Natsushima-cho, Yokosuka-shi, Kanagawa 237-8523, Japan
Get access

Abstract

The electrical characteristics of silicon nanowire (SiNW) solar cells with p-type hydrogenated amorphous silicon oxide (Eg =1.9 eV)/n-type SiNWs embedded in SiO2/n-type hydrogenated amorphous silicon (Eg =1.7 eV) structure have been investigated using a two-dimensional device simulator with taking the quantum size effects into account. The average bandgap of a SiNW embedded in SiO2 increased from 1.15 eV to 2.71 eV with decreasing the diameter from 10 nm to 1 nm due to the quantum size effect. It should be noted that under the sunlight with AM1.5G the open-circuit voltage (Voc ) of SiNW solar cells also increased to 1.54 V with decreasing the diameter of the SiNWs to 1 nm. This result suggests that it is possible to enhance the Voc by the quantum size effect and a SiNW is a promising material for the all silicon tandem solar cells.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

Yamada, S., Kurokawa, Y., Miyajima, S., Yamada, A., and Konagai, M., Proc. 35th IEEE Photovoltaic Specialist Conf. Honolulu, Hawaii, USA, 2010, p. 766.Google Scholar
Kurokawa, Y., Tomita, S., Miyajima, S., Yamada, A., and Konagai, M., Jpn. J. Appl. Phys. 46, L833 (2007).CrossRef
Tsakalakos, L., Balch, J., Fronheiser, J., Korevaar, B. A., Sulima, O., and Rand, J., Appl. Phys. Lett. 91, 233117 (2007).CrossRef
Sivakov, V., Andrä, G., Gawlik, A., Berger, A., Plentz, J., Falk, F., and Christiansen, S. H., Nano Lett. 9, 1549 (2009).CrossRef
Zhang, M. L., Peng, K. Q., Fan, X., Jie, J. S., Zhang, R. Q., Lee, S. T., and Wong, N. B., J. Phys. Chem. C 112, 4444 (2008).CrossRef
Green, M. A., Tech. dig. 15th Int. Photovoltaic Science & Engineering Conf. Shanghai, China, 2005, p. 7.Google Scholar
Shockley, W. and Queisser, H. J., J. Appl. Phys. 32, 510 (1961).CrossRef
Kurstjens, R., Vos, I., Dross, F., Poortmans, J., and Mertens, R., J. Electrochemical Society 159, H300 (2012).CrossRef
Kato, S., Watanabe, Y., Kurokawa, Y., Yamada, A., Ohta, Y., Niwa, Y., and Hirota, M., Jpn. J. Appl. Phys. 51, 02BP09 (2012).CrossRef
Hu, L. and Chen, G., Nano Lett. 7, 3249 (2007).CrossRef
King, R. R., Sinton, R. A., Swanson, R. W., and Ciszek, T. F., Proc. IEEE Photovoltaic Specialist Conf., New Orleans, 1987, p. 1168.Google Scholar
Zhao, J. H., Wang, A. H., Green, M. A., and Ferrazza, F., Appl. Phys. Lett. 73, 1991 (1998).CrossRef
Kato, S., Watanabe, Y., Kurokawa, Y., Yamada, A., Ohta, Y., Niwa, Y., and Hirota, M., Tech. dig. 21st Int. Photovoltaic Science and Engineering Conf. Fukuoka, 2011, p. 5C-5O-02.Google Scholar
Roulston, D. J., Arora, N. D., and Chamberlain, S. G., IEEE Trans. Electron Devices 29, 284 (1982).CrossRef
Law, M. E., Solley, E., Liang, M., and Burk, D. E., IEEE Trans. Electron Devices 12, 401 (1991).CrossRef
Fossum, J. G. and Lee, D. S., Solid-State Electron 25, 741 (1982).CrossRef
Bohm, D., Phys. Rev. 85, 180 (1952).CrossRef
Bohm, D., Phys. Rev. 85, 166 (1952).CrossRef
Iannaccone, G. C. G., Fiori, G., Proc. Int. Conf. Simulation of Semiconductor Processes and Devices Munich, Germany, 2004, p. 275.Google Scholar
Delle Site, L., Physica B 349, 218 (2004).CrossRef
Christopher Urban, J. E. M., Mukund, P. R., Semicond. Sci. Technol. 25, 115011 (2010).CrossRef
Renato Giacomini, J. A. M., J. Electrochemical Society 155, H213 (2008).CrossRef
Kurokawa, Y., Yamada, S., and Konagai, M., Jpn. J. Appl. Phys. To be pubished (2012).
Neophytou, N., Paul, A., Lundstrom, M. S., and Klimeck, G., IEEE Trans. Electron Devices 55, 1286 (2008).CrossRef
Luisier, M., Schenk, A., Fichtner, W., and Klimeck, G., Phys. Rev. B 74, 205323 (2006).CrossRef
Gnani, E., Reggiani, S., Gnudi, A., Parruccini, P., Colle, R., Rudan, M., and Baccarani, G., IEEE Trans. Electron Devices 54, 2243 (2007).CrossRef
Aoyama, T., Sugii, T., and Ito, T., Appl. Surf. Sci. 4142, 584 (1989).
Miyajima, S., Irikawa, J., Yamada, A., and Konagai, M., J. Appl. Phys. 109, 054507 (2011).CrossRef
Mickevicius, R. and Zhao, J. H., J. Appl. Phys. 83, 3161 (1998).CrossRef
Miyajima, S., Sawamura, M., Yamada, A., and Konagai, M., Jpn. J. Appl. Phys. 46, L693 (2007).CrossRef
Miyajima, S., Yamada, A., and Konagai, M., Jpn. J. Appl. Phys. 46, 1415 (2007).CrossRef
Miyajima, S., Irikawa, J., Yamada, A., and Konagai, M., Appl. Phys. Lett. 97, 023504 (2010).CrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 8 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 21st January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-r88h9 Total loading time: 0.294 Render date: 2021-01-21T00:06:36.619Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of the Quantum Size Effect on the Performance of Solar Cells with a Silicon Nanowire Array Embedded in SiO2
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effect of the Quantum Size Effect on the Performance of Solar Cells with a Silicon Nanowire Array Embedded in SiO2
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effect of the Quantum Size Effect on the Performance of Solar Cells with a Silicon Nanowire Array Embedded in SiO2
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *