Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-22T10:02:33.340Z Has data issue: false hasContentIssue false

Effect of Particle Size Distribution on Hydration Kinetics

Published online by Cambridge University Press:  25 February 2011

James M. Pommersheim*
Affiliation:
Bucknell University, Lewisburg, PA 17837
Get access

Abstract

A general method has been developed for determining the effects of particle size distribution (PSD) on the kinetics of hydration. Given the PSD and the kinetic rate for particles having a single size, expressions can be derived for the variation of the total degree of hydration with time. The method was applied to PSD and kinetic functions typical of cement systems that account for reaction, diffusion and expansion of spherical hydrate layers. The PSD was found to critically affect the kinetics. A key feature of the theory follows with time those particles that have become totally hydrated, so-called “dead” particles. This produces a dead-particle hydration curve having approximately the same shape and location as the overall hydration curve. It can be represented analytically in all cases and gives a measure of the disguise provided by the distribution.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brown, P.W., and Galuk, K, this symposium.Google Scholar
2. Knudsen, T., Proc. Int. Congr. Chem. Cem., 7th, 1980 II, I170 (1980).Google Scholar
3. Knudsen, T., Cem. Concr. Res. 14, 662680 (1984).CrossRefGoogle Scholar
4. Taplin, J.H., J. Chem. Soc. Faraday Trans. 1 76, 22292236 (1980).CrossRefGoogle Scholar
5. Brunauer, S., Yudenfreund, M., Odler, I. and Skalny, J., Cem. Concr. Res., 2(2), 129147 (1973).CrossRefGoogle Scholar
6. Skalny, J. and Young, J.F., Proc. Int. Congr. Chem. Cem., 7th, 1980 I, II1/3 (1980).Google Scholar
7. Young, J.F. et al. , Mater. Constr. (Paris), to be published.Google Scholar
8. Tong, H.S. and Young, J.F., J. Am. Ceram. Soc. 60(7), 321323 (1977).CrossRefGoogle Scholar
9. Menetrier, D., Jawed, I. and Skalny, J., Cem. Concr. Res. 10(3), 424432 (1980).Google Scholar
10. Fujii, K. and Kondo, W., J. Am. Ceram. Soc. 62(3–4), 161171 (1979).CrossRefGoogle Scholar
11. Taylor, H. et al. , Mater. Constr. (Paris) 17(102), 457468 (1984).CrossRefGoogle Scholar
12. Pommersheim, J. and Clifton, J., in Cem. Res. Prog. 1979, edited by Young, J.F. (ACerS, Westerville, 1980), pp. 281–307.Google Scholar
13. Taylor, H.F.W., Proc. Int. Congr. Chem. Cem., 8th, 1986 1, 82112 (1986).Google Scholar
14. Pommersheim, J. and Chang, J., Cem. Concr. Res. 16, 440450 (1986).CrossRefGoogle Scholar
15. Brown, P.W. et al. , Mater. Constr. (Paris) 19(110), 137147 (1986).Google Scholar
16. Fujii, K. and Kondo, W., J. Am. Ceram. Soc., 57(11), 492497 (1974).CrossRefGoogle Scholar
17. Brown, P.W., Pommersheim, J.M., and Frohnsdorff, G., in Cem. Res. Prog. 1979, edited by Young, J.F. (ACerS, Westerville, 1983) pp. 245–260.Google Scholar
18. Kondo, R. and Ueda, S., Proc. Int. Symp. Chem. Cem., 5th, 1968 II, 203255 (1969).Google Scholar
19. Pommersheim, J.M. and Clifton, J.R., Cem. Concr. Res. 9, 765770 (1979).CrossRefGoogle Scholar
20. Pommersheim, J.M., Clifton, J.R., and Frohnsdorff, G.J., Cem. Concr. Res. 12, 765772 (1982).CrossRefGoogle Scholar
21. Sharp, J.H., Brindley, G.W., and Achar, B.N.N., J. Am. Ceram. Soc. 49(7), 379382 (1966).CrossRefGoogle Scholar
22. Taplin, J., Proc. Int. Symp. Chem. Cem., 5th, 1968 II, 337348 (1969).Google Scholar
23. Taplin, J., J. Am. Ceram. Soc. 57, 140143 (1973).CrossRefGoogle Scholar
24. Bezjak, A., Jelenic, I., Mlakar, V. and Panovic, A., Proc. Int. Congr. Chem. Cem., 7th, 1980 II, 111116 (1980).Google Scholar
25. Bezjak, A., Cem. Concr. Res. 13, 305318 (1983).CrossRefGoogle Scholar
26. Bezjak, A., Cem. Concr. Res. 16, 260264 (1986).CrossRefGoogle Scholar