Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-gtjl9 Total loading time: 0.231 Render date: 2021-04-21T18:48:44.354Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Effect of Cr Addition on the Multiphase Equilibria in the Nb-rich Nb-Si-Ti System - Thermodynamic Modeling and Designed Experiments

Published online by Cambridge University Press:  01 February 2011

Ying Yang
Affiliation:
ying.yang@computherm.com, CompuTherm LLC, Madison, Wisconsin, United States
Bernard P Bewlay
Affiliation:
Bewlay@crd.ge.com, GE Global Research Center, Niskayuna, New York, United States
Shuanglin chen
Affiliation:
chen@computherm.com, CompuTherm LLC, Madison, Wisconsin, United States
M R Jackson
Affiliation:
jackson@crd.ge.com, GE Global Research Center, Niskayuna, New York, United States
Y. A. Chang
Affiliation:
changy@cae.wisc.edu, University of Wisconsin-Madison, Materials Science and Engineering, Madison, Wisconsin, United States
Get access

Abstract

Refractory Metal Intermetallic Composites (RMICs) based on the Nb-Si system are considered as candidates of next-generation high temperature materials (i.e. >1200°C). Ti and Cr have been shown to have beneficial effects on the oxidation resistance and mechanical properties of Nb-Si alloys. Phase equilibria in the Nb-Si-Ti system have been studied in detail. The present study has investigated multiphase equilibria in the Nb-Si-Ti alloys with Cr additions via an approach of integrating thermodynamic modeling with designed experiments. The alloying effects of Cr on the microstructure of the Nb-Si-Ti alloys are described using both phase equilibria and solidification paths that were calculated from the thermodynamic description of the Nb-Cr-Si-Ti system developed in the present study.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Bewlay, B. P., Jackson, M. R., Zhao, J. C., and Subramanian, P. R., Metall Mater Trans A, 34A(10), 2043 (2003).CrossRefGoogle Scholar
2. Bewlay, B. P., Jackson, M. R., Zhao, J. C., Subramanian, P. R., Mendiratta, M. G., and Lewandowski, J. J., MRS Bull, 28(9), 646 (2003).CrossRefGoogle Scholar
3. Bewlay, B. P., Jackson, M. R., and Lipsitt, H. A., Metall Mater Trans A, 27A(12), 3801 (1996).CrossRefGoogle Scholar
4. Bewlay, B. P., Jackson, M. R., and Subramanian, P. R., JOM, 51(4), 32(1999).CrossRefGoogle Scholar
5. Jackson, M. R., Bewlay, B. P., Rowe, R. G., Skelly, D. W., and Lipsitt, H. A., JOM, 48(1), 39 (1996).CrossRefGoogle Scholar
6. Mendiratta, M. G., Lewandowski, J. J., and Dimiduk, D. M., Metall Mater Trans A, 22A(7), 1573 (1991).CrossRefGoogle Scholar
7. Muggianu, Y. M., Gambino, M., and Bros, J. P., J Chem Phys, 72(1), 83 (1975).Google Scholar
8. Yang, Y. and Chang, Y. A., Thermodynamic Database of Nb Silicide Based Alloys, CompuTherm LLC, Madison, WI 53719 (2008).Google Scholar
9. Yang, Y., Bewlay, B. P., and Chang, Y. A., Intermetallics, Submitted (2008).Google Scholar
10. Du, Y. and Schuster, J. C., Scand J Metall, 31(1), 25 (2002).CrossRefGoogle Scholar
11. Chen, S. L., Daniel, S., Zhang, F., Chang, Y. A., Yan, X. Y., Xie, F. Y., Schmid-Fetzer, R., and Oates, W. A., Calphad, 26(2), 175188 (2002).CrossRefGoogle Scholar
12. Scheil, E., Z Metallkd, 34, 242246 (1942).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 17 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 21st April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of Cr Addition on the Multiphase Equilibria in the Nb-rich Nb-Si-Ti System - Thermodynamic Modeling and Designed Experiments
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effect of Cr Addition on the Multiphase Equilibria in the Nb-rich Nb-Si-Ti System - Thermodynamic Modeling and Designed Experiments
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effect of Cr Addition on the Multiphase Equilibria in the Nb-rich Nb-Si-Ti System - Thermodynamic Modeling and Designed Experiments
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *