Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-569ts Total loading time: 0.268 Render date: 2022-09-30T03:40:39.998Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Effect of Carbon on the Adhesion of Aluminum Films to Sapphire Substrates

Published online by Cambridge University Press:  10 February 2011

J. A. Schneider
Affiliation:
Sandia National Laboratories, Livermore, CA 94551
S. E. Guthrie
Affiliation:
Sandia National Laboratories, Livermore, CA 94551
M. D. Kriese
Affiliation:
Dept. of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
W. M. Clift
Affiliation:
Sandia National Laboratories, Livermore, CA 94551
N. R. Moody
Affiliation:
Sandia National Laboratories, Livermore, CA 94551
Get access

Abstract

The adhesion of aluminum (Al) films onto sapphire substrates in the presence of controlled contaminants is being investigated. In this study, adhesion strength is evaluated by continuous nanoindentation tests to induce delamination of the Al film from the sapphire substrate. Typically it is difficult to increase the elastic strain energy stored in the film to levels sufficient to promote indentation delaminated blistering in thin ductile films on hard substrates. One method that appears promising is the use of highly stressed overlayers deposited over the Al. An overlayer of sputtered tantalum (Ta) was deposited on 500 rn thick Al films with and without 10 nm of sputtered carbon on the sapphire surface. With Ta overlayers, continuous nanoindentation techniques induced larger diameter delamination blisters in the specimens with carbon, than in the specimens without carbon, indicating a lower resistance to fracture or interfacial strength.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ohring, M., The Materials Science of Thin Films, (Academic Press, Inc., New York, 1992).Google Scholar
2. Bagchi, A., Evans, A.G., Thin Solid Films, 286, 203 (1996)CrossRefGoogle Scholar
3. Suo, Z., Hutchinson, J.W., Int. J. of Fracture, 43, 1 (1990).CrossRefGoogle Scholar
4. Rice, J.R., J. Appl. Mech., 55, 98 (1988).CrossRefGoogle Scholar
5. Evans, A.G., Ruhle, M, Dalgleish, B.J., Charalambides, P.G., Mater. Sci. Engr., A126, 53 (1990).CrossRefGoogle Scholar
6. Hutchinson, J.W. Suo, Z., Adv. in Applied Mechanics, (Academic Press, Inc., New York, 1992).Google Scholar
7. Evans, A.G., Drory, M.D., Hu, M.S., J. Mater. Res., 3, 1043 (1988).CrossRefGoogle Scholar
8. Chai, H., Int. J. Fracture, 46, 237 (1990).CrossRefGoogle Scholar
9. Jensen, H. M., Engr. J. Fract. Mech., 40, 475 (1991).CrossRefGoogle Scholar
10. Evans, A.G., Hutchinson, J.W., Int. J. Solids Structures, 20 [5] 455 (1984).CrossRefGoogle Scholar
11. Marshall, D.B., Evans, A.G., J. Appl. Phys., 56 [10] 2632 (1984).CrossRefGoogle Scholar
12. Turner, M.R., Evans, A.G., Acta Mater, 44, 863 (1996).CrossRefGoogle Scholar
13. Bagchi, A., Lucas, G.E., Suo, Z., Evans, A.G., J. Mater. Res., 9, 1734 (1994).CrossRefGoogle Scholar
14. Kriese, M. D., Moody, N. R., Gerberich, W. W., MRS Symp. Proc., 473, 39, ed. J.J. Clement, R. R. Keller, K. S. Krisch, J. E. Sanchez Jr., and Z. Suo (1997).Google Scholar
15. Cullity, D. B., Elements of X-Ray Diffraction, (Addison-Wesley, Reading, Massachusetts, 1967).Google Scholar
16. Oliver, W. C., Pharr, G. M., J. Mat. Res., 7, 1564 (1992).CrossRefGoogle Scholar
17. Kriese, M. D., Moody, N. R., Gerberich, W. W., to be submitted J. Mat. Res. (1998).Google Scholar
18. Oda, M., Ozawa, A., Ohki, S., Yoshihara, H., Jpn. J. Appl. Phys, 11, 2616 (1990).CrossRefGoogle Scholar
19. Saha, R., Barnard, J. A., Cry, J.. Growth, 174, 495 (1997).CrossRefGoogle Scholar
20. Thorton, J. A., Hoffman, D. W., Thin Solid Films, 171, 5 (1989).CrossRefGoogle Scholar
21. Doerner, M. F., Gardner, D. S., Nix, W. D., J. Mater. Res., 1, 845 (1986).CrossRefGoogle Scholar
22. Chopra, K. L., Thin Film Phenomena, (McGraw-Hill Book Co., New York, 1969).Google Scholar
23. Laugier, M.T., Thin Solid Films, 117, 243 (1984).CrossRefGoogle Scholar
24. Agrawal, D.C., Raj, R., Mat. Sci. Engr., A126, 125 (1990).CrossRefGoogle Scholar
25. Benjamin, P., Weaver, C., Proc. Roy. Soc. London, A252, 418 (1959).Google Scholar
26. Bahr, D. F., Hoehn, J. W., Moody, N. R., Gerberich, W. W., Acta mater., 45 [12], 5163 (1997).CrossRefGoogle Scholar
27. Kerans, R. J., Hay, R. S., Pagano, N. J., Cer. Bull., 68 [2], 429 (1989).Google Scholar
28. Brennan, J. J., Tailoring Multiphase and Composite Ceramics, ed. R. T. Tressler, G. L. Messing, C. G. Pantano, R. E. Newnham, 549 (1986).Google Scholar
29. Brennan, J.J., ONR Tech. Report R87-917546-4 (1987).Google Scholar
30. Dehm, G., Raj, R., Ruhle, M., Mat. Sci. Forum, 207–209, 597 (1996).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of Carbon on the Adhesion of Aluminum Films to Sapphire Substrates
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Effect of Carbon on the Adhesion of Aluminum Films to Sapphire Substrates
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Effect of Carbon on the Adhesion of Aluminum Films to Sapphire Substrates
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *