Hostname: page-component-68945f75b7-fzmlz Total loading time: 0 Render date: 2024-08-06T01:19:33.908Z Has data issue: false hasContentIssue false

Effect of Aluminum Concentration And Boron Dopant on Environmental Embriitlement In Feal Aluminides

Published online by Cambridge University Press:  26 February 2011

C. T. Liu
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
E. P. George
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

The room-temperature tensile properties of FeAl aluminides were determined as functionsof aluminum concentration (35 to 43 at. % Al), test environment, and surface (oil) coating. The two lower aluminum alloys containing 35 and 36.5% Al are prone to severe environmental embrittlement, while the two higher aluminum alloys with 40 and 43% Al are much less sensitive to change in test environment and surface coating. The reason for the different behavior is that the grain boundaries are intrinsically weak in the higher aluminum alloys, and these weak boundaries dominate the low ductility and brittle fracture behavior of the 40 and 43% Al alloys. When boron is added to the 40% Al alloy as a grain-boundary strengthener, the environmental effect becomes prominent. In this case, the tensile ductility of the boron-doped alloy, just like that of the lower aluminum alloys, can be dramatically improved by control of test environment (e.g. dry oxygen vs air). Strong segregation of boron to the grain boundaries, with a segregation factor of 43, was revealed by Auger analyses.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Takasugi, T. and Izumi, O., Acta Metall. 34, 607 (1986).Google Scholar
2. Takasugi, T., Masahashi, N., and Izumi, O., Scr. Metall. 20, 1317 (1986).Google Scholar
3. Liu, C. T., Lee, E. H., and McKamey, C. G., Scr. Metall. 23, 875 (1989).Google Scholar
4. Liu, C. T., McKamey, C. G., and Lee, E. H., Scr. Metall. 24, 38590 (1990).CrossRefGoogle Scholar
5. Masahashi, N., Takasugi, T., and Izumi, O., Metall. Trans. A 19A, 353 (1988).Google Scholar
6. Izumi, O. and Takasugi, T., J. Mater. Res. 3, 426 (1988).Google Scholar
7. Masahashi, N., Takasugi, T., and Izumi, O., Acta Metall. 36, 182336 (1988).Google Scholar
8. Takasugi, T. and Izumi, O., Scr. Metall. 19, 903 907(1985).Google Scholar
9. Liu, C. T. and George, E. P., Scr. Metall. 24, 128590(1990).Google Scholar
10. Liu, C. T. and McKamey, C. G., pp. 13352 in High-Temperature Aluminides and Intermetallics, ed. Whang, S. H., Liu, C. T., Pope, D. P. and Stiegler, J. O., TMS Publication, Warrendale, PA, 1990.Google Scholar
11. Gaydosh, D. J. and Nathal, M. V., Scr. Metall. 24, 1281 84(1990).Google Scholar
12. Davis, L. E., MacDonald, N. C., Palmberg, P. W., Riach, G. E., and Weber, R. E., Handbook of Auger Electron Spectroscopy, Physical Electronics Industries, Inc., Eden Prairie, MN, 1976.Google Scholar
13. Crimp, M. A., Vedula, K. M., and Gaydosh, D. J., pp. 499 504 in MRS Proc., Vol. 81, High-Temperature Ordered Intermetallic Alloys II, ed. Stoloff, N. S., Koch, C. C., Liu, C. T. and Izumi, O., MRS Publication, 1987.Google Scholar
14. Gaydosh, D. J., Draper, S. L., and Nathal, M. V., Metall. Trans. A 20A, 170114 (1989).Google Scholar
15. Crimp, M. A. and Vedula, K. M., Mater. Sci. Eng. 78, 193 (1986).Google Scholar
16. Mendiratta, M. G., Ehlers, S. K., and Chatterjee, D. K., p. 420 in Proc. NBS Symp. Rapid Solidification Processing: Principles and Technologies, Dec. 6–8, 1982, NBS, Gaithersburg, MD (1983).Google Scholar
17. Baker, I. and Gaydosh, D. J., Mater. Sci. Eng. 96, 14759 (1987).Google Scholar
18. Baker, I. and Gaydosh, D. J., pp. 315 20 in MRS Proc., Vol. 81, High-Temperature Ordered Intermetallic Alloys II, ed. Stoloff, N. S., Koch, C. C., Liu, C. T. and Izumi, O., MRS Publication, 1987.Google Scholar
19. Sainfort, G., Monturat, P., Pepin, P., Petit, J., Cabane, G. and Salesse, M., Mem. Sci. Rev. Met. 60, 125 (1963).Google Scholar
20. Horton, J. A., Liu, C. T., and Koch, C. C., pp. 30921 High-Temperature Alloys: Theory and Design, ed. Stiegler, J. O., AIME, Warrendale, PA, 1984.Google Scholar
21. McKamey, C. G., Horton, J. A., and Liu, C. T., pp. 321 27 in MRS Proc., Vol. 81, High- Temperature Ordered Intermetallic Alloys II, ed. Stoloff, N. S., Koch, C. C., Liu, C. T. and Izumi, O., MRS publication, 1987.Google Scholar
22. Kerr, W. R., Metall. Trans. A. 17A, 2298 (1986).Google Scholar
23. Aoki, K. and Izumi, O., Nippon Kinzoku Gakkaishi 43, 1190 (1979).Google Scholar
24. Liu, C. T., White, C. L., and Horton, J. A., Acta Metall. 33, 213 19 (1985).Google Scholar
25. Liu, C. T. and Koch, C. C., p. P42 in Proc. of a Public Workshop on Trends in Critical Materials Requirements for Steels of the Future: Conservation and Substitution Technology for Chromium, NBSIR-83–2679–2, NBS, Washington, DC, June 1983.Google Scholar
26. Taub, A. I., Huang, S. C., and Chang, K. M., Metall. Trans. A 15A, 399 (1984).Google Scholar
27. George, E. P., Liu, C. T., and Padgett, R. A., Scr. Metall. 23, 979 (1989).Google Scholar
28. George, E. P. and Liu, C. T., J. Mater. Res. 5, 754 (1990).Google Scholar