Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T07:28:43.031Z Has data issue: false hasContentIssue false

Early Electromigration Failure in Submicron width, Multilayer Al Alloy Conductors: Sensitivity to Stripe Length

Published online by Cambridge University Press:  22 February 2011

A. S. Oates*
Affiliation:
AT&T Bell Laboratories 555 Union Blvd., Allentown, PA 18103
Get access

Abstract

The microstructure of Al alloy integrated circuit conductors strongly affects electromigration failure of the metallization. For submicron linewidths, the microstructure is usually near - bamboo, consisting of alternate polycrystalline and bamboo segments. These polycrystalline segments appear to be much more susceptible to electromigration - induced voiding than the bamboo regions. As a result, microstructural related early failures are a significant concern. In this study we systematically vary line - length to investigate the impact of random microstructural variations on the failure distribution parameters of narrow, multilayer (Ti/TiN/Al/TiN) Al alloy conductors. We show that early failures can occur in 0.6 μm wide stripes. The impact of early void formation on conductor failure, however, is dependent on the resistance failure criterion. By increasing the value, early failures may be eliminated in long line - lengths, suggesting that the resistance failure criterion may provide a means to control the impact of early voiding on the electromigration failure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Attardo, M.J., Rosenberg, R., J.Appl.Phys, 41(6), 2381, 1970.Google Scholar
2. Walton, D.T., Frost, H.J., Thompson, C.V., Mat.Res.Soc.Symp.Proc., 225,1991.Google Scholar
3. Kahn, H., Thompson, C.V., Cooperman, S.S., Mat.Res.Soc.Symp.Proc., 265, 65, 1992.Google Scholar
4. Kim, C., Selister, S.I., Morris, J.W., Mat.Res.Soc.Symp.Proc., 309, 127, 1993.Google Scholar
5. Cho, J., Thompson, C.V., Appl.Phys.Lett., 54(25), 2577, 1989.Google Scholar
6. Agarwala, B.N., Attardo, M.J., Ingrham, A.P., J.Appl.Phys, 41(10), 3954, 1970.Google Scholar
7. Thompson, C.V., Kahn, H., J.Elec.Mat., 22(6), 581, 1993.Google Scholar
8. Ondrusek, J., Nishimura, A., Hoang, H.H., Sugiura, T., Blumenthal, R., Kitagawa, H., McPherson, J.W., Proc.IEEE IRPS, 26, 179, 1988.Google Scholar
9. Sanchez, J.E., Morris, J.W., Mat.Res.Soc.Symp.Proc., 225, 53, 1991.Google Scholar
10. Kwok, T., Tan, C., Moy, D., Estabil, J.J., Rathore, H.S., Basavaiah, S., IEEE VMIC Conf., 106, 1990.Google Scholar
11. Knorr, D.B., Rodbell, K.P., Mat.Res.Soc.Symp.Proc., 309, 345, 1993.Google Scholar
12. Sanchez, J.E., Arzt, E., Mat.Res.Soc.Symp.Proc., 265, 131, 1992.Google Scholar
13. Hoang, H.H., Nikkel, E.L., McDavid, J.M., MacNaughton, R.B., J.Appl.Phys, 65(3), 1044, 1989.Google Scholar
14. Blech, I. A., J. Appl. Phys., 47, 1203, 1976.Google Scholar
15. Ross, C. A., Evetts, J. W., Mat. Res. Soc. Symp. Proc., 108, 319, 1988.Google Scholar