Skip to main content Accessibility help
×
Home

Dispersion Properties of Photonic Crystal Fibers - Issues and Opportunities

Published online by Cambridge University Press:  01 February 2011

J. Lægsgaard
Affiliation:
: Research center COM, Technical University of Denmark Bldg. 345w, DK-2800 Kgs.
S. E. Barkou Libori
Affiliation:
: Research center COM, Technical University of Denmark Bldg. 345w, DK-2800 Kgs.
K. Hougaard
Affiliation:
: Research center COM, Technical University of Denmark Bldg. 345w, DK-2800 Kgs.
J. Riishede
Affiliation:
: Research center COM, Technical University of Denmark Bldg. 345w, DK-2800 Kgs.
T. T. Larsen
Affiliation:
: Research center COM, Technical University of Denmark Bldg. 345w, DK-2800 Kgs.
T. Sørensen
Affiliation:
: Research center COM, Technical University of Denmark Bldg. 345w, DK-2800 Kgs.
T. P. Hansen
Affiliation:
: Research center COM, Technical University of Denmark Bldg. 345w, DK-2800 Kgs. Lyngby: Crystal Fibre A/S, Blokken 84, DK-3460 Birkerød
K. P. Hansen
Affiliation:
: Research center COM, Technical University of Denmark Bldg. 345w, DK-2800 Kgs. Lyngby: Crystal Fibre A/S, Blokken 84, DK-3460 Birkerød
M. D. Nielsen
Affiliation:
: Research center COM, Technical University of Denmark Bldg. 345w, DK-2800 Kgs. Lyngby: Crystal Fibre A/S, Blokken 84, DK-3460 Birkerød
J. B. Jensen
Affiliation:
: Research center COM, Technical University of Denmark Bldg. 345w, DK-2800 Kgs.
A. Bjarklev
Affiliation:
: Research center COM, Technical University of Denmark Bldg. 345w, DK-2800 Kgs.
Get access

Abstract

The dispersion, which expresses the variation with wavelength of the guided-mode group velocity, is one of the most important properties of optical fibers. Photonic crystal fibers (PCFs) offer much larger flexibility than conventional fibers with respect to tailoring of the dispersion curve. This is partly due to the large refractive-index contrast available in silica/air microstructures, and partly due to the possibility of making complex refractive-index structures over the fiber cross section. We discuss the fundamental physical mechanisms determining the dispersion properties of PCFs guiding by either total internal reflection or photonic bandgap effects, and use these insights to outline design principles and generic behaviours of various types of PCFs. A number of examples from recent modeling and experimental work serve to illustrate our general conclusions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Knight, J. C. and St, P., Russell, J.. Applied optics: New ways to guide light. Science, 296:276277, 2002.CrossRefGoogle ScholarPubMed
[2] Birks, T. A., Knight, J. C., Mangan, B. J., and St, P., Russell, J.. Photonic crystal fibres: An endless variety. IEICE Trans. Electron., E84–C:585591, 2001.Google Scholar
[3] Knight, J. C., Birks, T. A., Cregan, R. F., St, P., Russell, J., and De Sandro, J.-P.. Large mode area photonic crystal fibre. Electron. Lett., 34:13471348, 1998.CrossRefGoogle Scholar
[4] Broderick, N. G. R., Monro, T. M., Bennett, P. J., and Richardson, D. J.. Nonlinearity in holey optical fibers: measurement and future opportunities. Opt. Lett., 24:1395–97, 1999.CrossRefGoogle ScholarPubMed
[5] Ranka, J. K., Windeler, R. S., and Stentz, A. J.. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett., 25:2527, 2000.CrossRefGoogle ScholarPubMed
[6] Knight, J. C., Arriaga, J., Birks, T. A., Ortigosa-Blanch, A., Wadsworth, W. J., and Russell, P. St. J.. Anomalous dispersion in photonic crystal fiber. IEEE Photonic Tech. L., 12:807809, 2000.CrossRefGoogle Scholar
[7] Furusawa, K., Malinowski, A., Price, J. H. V., Monro, T. M., Sahu, J. K., Nilsson, J., and Richardson, D. J.. Cladding pumped ytterbium-doped fiber laser with holey inner and outer cladding. Optics Express, 9:714–20, 2001.CrossRefGoogle ScholarPubMed
[8] Cregan, R. F., Mangan, B. J., Knight, J. C., Birks, T. A., Russell, P. St. J., Roberts, P. J., and Allan, D. C.. Single-mode photonic band gap guidance of light in air. Science, 285:15371539, 1999.CrossRefGoogle ScholarPubMed
[9] Venkataraman, N., Gallagher, M. T., Smith, C. M., Müller, D., West, J. A., Koch, K. W., and Fajardo, J. C.. Low loss (13 db/km) air core photonic bandgap fiber, 28th European Conference on Optical Communication, ECOC '02, September 2002, Copenhagen, Denmark, post-deadline paper PD1.1.Google Scholar
[10] Oxenløwe, L. K., Siahlo, A. J., Berg, K. S., Tersigni, A., Clausen, A. T., Peucheret, C., Jeppesen, P., Hansen, K. P., and Jensen, J. R.. A photonic crystal fibre used as a 160 to 10 gb/s demultiplexer, OECC 2002 post deadline paper PD-1–4.Google Scholar
[11] Genty, G., Lehtonen, M., Ludvigsen, H., Broeng, J., and Kaivola, M.. Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers. Optics Express, 10:1083–98, 2002.CrossRefGoogle ScholarPubMed
[12] Birks, T. A., Mogilevtsev, D., Knight, J. C., and Russell, P. S. J.. Dispersion compensation using single-material fibers. IEEE Photon. Tech. Lett., 11:674676, 1999.CrossRefGoogle Scholar
[13] Poli, F., Cucinotta, A., Fuochi, M., Selleri, S., and Vincetti, L.. Characterization of mi-crostructured optical fibers for wideband dispersion compensation. J. Opt. Soc. Am. A, 20:1958–62, 2003.CrossRefGoogle ScholarPubMed
[14] Broeng, J., Barkou, S. E., Bjarklev, A., Knight, J. C., Birks, T. A., and Russell, P. S. J.. Highly increased photonic band gaps in silica/air structures. Opt. Commun., 156:240– 244, 1998.CrossRefGoogle Scholar
[15] Knight, J. C., Broeng, J., Birks, T. A., and Russell, P. St. J.. Photonic band gap guidance in optical fibers. Science, 282:14761478, 1998.CrossRefGoogle ScholarPubMed
[16] Bise, R. T., Windeler, R. S., Kranz, K. S., Kebage, C., Eggleton, B. J., and Trevor, D. J.. Tunable photonic band-gap fibre, OFC 2002, ThK3.Google Scholar
[17] Larsen, T. T., Bjarklev, A., Hermann, D. S., and Broeng, J.. Optical devices based on liquid crystal photonic bandgap fibres. Optics Express, 11:2589–96, 2003.CrossRefGoogle ScholarPubMed
[18] Snyder, A. W. and Love, J. D.. Optical Waveguide Theory. Chapman & Hall, London, 1996.Google Scholar
[19] Okamoto, K.. Fundamentals of optical waveguides. Academic Press, San Diego, 2000.Google Scholar
[20] Ferrando, A., Silvestre, E., Andrés, P., Miret, J. J., and Andrés, M. V.. Designing the properties of dispersion-flattened photonic crystal fibers. Optics Express, 9:687697, 2001.CrossRefGoogle ScholarPubMed
[21] Lægsgaard, J., Bjarklev, A., and Barkou Libori, S. E.. Chromatic dispersion in photonic crystal fibers: Fast and accurate scheme for calculation. J. Opt. Soc. Am. B, 20:443–8, 2003.CrossRefGoogle Scholar
[22] Lægsgaard, J., Mortensen, N. A., Riishede, J., and Bjarklev, A.. Material effects in airguiding photonic bandgap fibers, to appear in J. Opt. Soc. Am. B.Google Scholar
[23] Lægsgaard, J. and Bjarklev, A.. Doped photonic bandgap fibers for short-wavelength nonlinear devices. Opt. Lett., 28:783–5, 2003.CrossRefGoogle ScholarPubMed
[24] Zsigri, B., Peucheret, C., Nielsen, M. D., and Jeppesen, P.. Transmission over 5.6km large effective area and low-loss (1.7 db/km photonic crystal fibre. Electronics Letters, 39:796–8, 2003.CrossRefGoogle Scholar
[25] Ferrando, A., Silvestre, E., Miret, J. J.,, Monsoriu, J. A., Andrés, M. V., and Russell, P. St. J.. ‘designing a photonic crystal fibre with flattened chromatic dispersion’. Electronics Letters, 35:325327, 1999.CrossRefGoogle Scholar
[26] Reeves, W. H., Knight, J. C., St, P., Russell, J., and Roberts, P. J.. Demonstration of ultra-flattened dispersion in photonic crystal fibers. Optics Express, 10:609–13, 2002.CrossRefGoogle ScholarPubMed
[27] Hansen, K. P.. Dispersion flattened hybrid-core nonlinear photonic crystal fiber. Optics Express, 11:1503–9, 2003.CrossRefGoogle ScholarPubMed
[28] Grüner-Nielsen, L., Knudsen, S. N., Edvold, B., Veng, T., Magnussen, D., Larsen, C. C., and Damsgaard, H.. Dispersion compensating fibers. Opt. Fiber Tech., 6:164–80, 2000.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 7 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 28th January 2021. This data will be updated every 24 hours.

Hostname: page-component-6585876b8c-p4jp5 Total loading time: 0.253 Render date: 2021-01-28T09:48:28.009Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Dispersion Properties of Photonic Crystal Fibers - Issues and Opportunities
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Dispersion Properties of Photonic Crystal Fibers - Issues and Opportunities
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Dispersion Properties of Photonic Crystal Fibers - Issues and Opportunities
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *