Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T20:32:12.396Z Has data issue: false hasContentIssue false

Disordering and Reordering Kinetics of a Fe–40A1 B2 Alloy

Published online by Cambridge University Press:  22 February 2011

S. Gialanella
Affiliation:
Dipartimento di Ingegneria dei Materiali, Universita di Trento, 38050, Trento Italy;
M. D. Baró
Affiliation:
Departament de Fisica, Universitat Autonoma de Barcelona, 08193, Bellaterra, Spain.
L. Lutterotti
Affiliation:
Dipartimento di Ingegneria dei Materiali, Universita di Trento, 38050, Trento Italy;
S. Suriñach
Affiliation:
Departament de Fisica, Universitat Autonoma de Barcelona, 08193, Bellaterra, Spain.
Get access

Abstract

The ordered structure of Fe–40A1 B2 powders was completely disordered by high energy ball-milling. The defect structures of the powders disordered to different extents were characterized using X-Ray diffraction. A significant lattice expansion was observed, which we tried to relate to the high concentration of point defects introduced into the material as a consequence of milling.

A complete reordering was accomplished by heating up the specimens under an inert Ar atmosphere. We followed the kinetics of the disorder to order transformation by Differential Scanning Calorimetry and Thermogravimetric Magnetic Measurements. The two techniques allowed us to identify the temperature range and the apparent activation energy of the process. As expected, a decrease in the magnetic moment of the originally disordered powders as a consequence of the reordering treatments was also observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stoloff, N.S., in High-Temperature Ordered Intermetallic Alloys. (Mater. Res. Soc, 39, Pittsburgh, PA, 1985) pp.327.Google Scholar
2. Vedula, K. and Stephens, J.R., Progr. Powder Metallurgy, 43, 561 (1987).Google Scholar
3. Gaydosh, D.J. and Crimp, M.A., in High-Temperature Ordered Intermetallic Alloys, (Mater. Res.Soc. 39, Pittsburgh, PA, 1985) pp.429436.Google Scholar
4. Bradley, A.J. and Jay, A.H., Proc.Roy.Soc, A136, 210 (1932).Google Scholar
5. Chang, Y.A. and Neumann, J.P., Progr. Solid State Chem., 14, 221 (1982).Google Scholar
6. Allen, S.M. and Cahn, J.W., Acta Met., 24, 425 (1976)Google Scholar
7. Lutterotti, L. and Gialanella, S., to be published.Google Scholar
8. Gialanella, S., Intermetallics, in press (1994).Google Scholar
9. Gialanella, S. and Lutterotti, L., Proc. of IntSymp. on Metastable, Mechanically Alloyed, Nanocrystalline Materials, Grenoble (F) 1994. To be published in Materials Science Forum (1995).Google Scholar
10. de Boer, F.R., Boom, R., Mattens, W.C.M., Miedema, A.R. and Niessen, A.K., in Cohesion in Metals. North-Holland, 1988.Google Scholar
11. Nastasi, M. and Mayer, J.W., Mat. Sci. Rep., 6, 1 (1991).Google Scholar
12. Jang, J.S.C. and Koch, C.C., J. Mat. Res., 5, 498 (1990).Google Scholar
13. Okamoto, H. and Beck, P.A., Met.Trans., 2, 570 (1971).Google Scholar
14. Cadeville, M.C. and Moran-Lopez, J.L., Physics Reports , 153(6), 331 (1987).Google Scholar
15. Inden, G., in Alloy Phase Diagrams (MRS Proc. 19, Elsevier Science Publ., New York, 1983) p.175188.Google Scholar
16. Sassi, O., Benlemlih, S., Aride, J., Berrada, A. and Moya, G., J.Alloys and Comp., 188, 246 (1992).Google Scholar
17. Mishra, S. and Beck, P.A., in Order-Disorder Transformations in Alloys, ed by Warlimont, H. (Springer-Verlag, Berlin, 1973) p.344.Google Scholar
18. BarÓ, M.D., Malagelada, J., Suriñach, S., Mora, M.T., Gialanella, S. and Cahn, R.W., Acta Met. Mat., 41, 1065 (1993).Google Scholar
19. Yavari, A.R., Acta Met.Mat., 41, 1391 (1993).Google Scholar