Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-28T06:38:33.809Z Has data issue: false hasContentIssue false

Diode Laser Induced Chemical Vapor Deposition of WSIx from WF6 and SiH4

Published online by Cambridge University Press:  25 February 2011

P. Desjardins
Affiliation:
Groupe des Couches Minces and Département de Génie Physique, Ecole Polytechnique de Montréal, P.O. Box 6079, Station A, Montréal, Québec, H3C 3A7, CANADA
R. Izquierdo
Affiliation:
Groupe des Couches Minces and Département de Génie Physique, Ecole Polytechnique de Montréal, P.O. Box 6079, Station A, Montréal, Québec, H3C 3A7, CANADA
M. Meunier
Affiliation:
Groupe des Couches Minces and Département de Génie Physique, Ecole Polytechnique de Montréal, P.O. Box 6079, Station A, Montréal, Québec, H3C 3A7, CANADA
Get access

Abstract

We have developed a compact and inexpensive laser direct writing system, based on the 796 nm radiation of a 1 W diode laser array for the deposition of tungsten silicides. The laser power incident on TiN substrates varies between 50 and 550 mW. Lines are deposited from a gas mixture of WF6 and SiH4, whose total pressure is kept below 15 Torr to avoid uncontrolled reactions. Experiments are performed in a static reactor with WF6/SiH4 ratios varying from 0.2 to 10. Lines written at speeds ranging from 2 to 100 μm/s have typical thicknesses and widths varying from 30 to 1000 μm and from 4 to 15 μm respectively. Auger Electron Spectroscopy (AES) shows that no fluorine is incorporated in the WSix film, within the limit of detection. Moreover, no oxygen, carbon or nitrogen are detected in the bulk, although some surface contamination is present. From AES measurements, the W/Si ratio is estimated to be between 1.1 and 1.4 for a reactive gas mixture of WF6: SiH4 (1: 3).

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Black, J.G., Ehrlich, D.J., Rothschild, M., Doran, S.P., Sedlacek, J.H.C., J. Vac. Sci. Tech. B5, 419 (1987).Google Scholar
[2] Black, J.G., Doran, S.P., Rothschild, M., Ehrlich, D.J., Appl. Phys. Lett. 50, 1016 (1987).Google Scholar
[3] Chen, C.L., Black, J.G., Doran, S.P., Mahoney, L.J., Murphy, R.A., Ehrlich, D.J., Electron. Lett. 24, 1396 (1988).Google Scholar
[4] Miracky, R.F. in Tungsten and Other Refractory Metals for VLSI Applications IV, edited by Blewer, R.S. and McConica, C.M. (Mater. Res. Soc. Proc., Pittsburgh, PA 1989) pp. 299305.Google Scholar
[5] Deutsch, T.F., Rathman, D.D., Appl. Phys. Lett. 45, 623 (1984).Google Scholar
[6] Shintani, A., Tsuzuku, T., Nishitani, E., Nakatani, M., J. Appl. Phys. 61, 2365 (1987).Google Scholar
[7] Maaren, A.J.P. Van, Krans, R.L., Haas, E. De, Sinke, W.C., Appl. Surf. Sci. 38, 386 (1989).CrossRefGoogle Scholar
[8] Allen, S.D., Trigubo, A.B., Jan, R.Y. in Laser Diagnostics and Photochemical Processing for Semiconductor Devices, edited by Osgood, R.M., Brueck, S.R.J. and Schlossberg, H.R. (Mater. Res. Soc. Proc. 17, Pittsburgh, PA 1983) pp. 207214.Google Scholar
[9] Allen, S.D., Trigubo, A.B., J. Appl. Phys. 54, 1641 (1983).Google Scholar
[10] Liu, Y.S., Yakymyshyn, C.P., Philipp, H.R., Cole, H.S., Levinson, L.M., J. Vac. Sci. Tech. B.3, 1441 (1985).Google Scholar
[11] Liu, Y.S. in Tungsten and Other Refractory Metals for VLSI Aoplications, edited by Blewer, R.S. (Mater. Res. Soc. Proc., Pittsburgh, PA 1986) pp. 4352.Google Scholar
[12] Lin, J.Y., Allen, S.D. in In-Situ Patterning: Selective Area Deposition and Etching, edited by Bernhardt, A.F., Black, J.G. and Rosenberg, R. (Mater. Res. Soc. Symp. 158, Pittsburgh, PA 1990) pp. 8590.Google Scholar
[13] Auvert, G., Pauleau, Y., Tonneau, D., in In-Situ Patterning: Selective Area Deposition and Etching, edited by Bernhardt, A.F., Black, J.G. and Rosenberg, R. (Mater. Res. Soc. Symp. 158, Pittsburgh, PA 1990) pp. 155160.Google Scholar
[14] Black, J.G., Doran, S.P., Rothschild, M., Ehrlich, D.J., Appl. Phys. Lett. 56, 1072 (1990).Google Scholar
[15] Zhang, G.Q., Szörényi, T., Bduerle, D., J. Appl. Phys. 2, 673 (1987).CrossRefGoogle Scholar
[16] Izquierdo, R., Lecours, A., Meunier, M., This Symposium.Google Scholar
[17] Arjavalingam, G., Oprysko, M.M., Hurst, J.E. Jr in Laser and Particle-Beam Chemical Processing for Microelectronics, edited by Ehrlich, D.J., Higashi, G.S., Oprysko, M.M. (Mater. Res. Soc. Proc. 101, Pittsburgh, PA 1988) pp. 8187.Google Scholar
[18] Palik, E.D., Ed., Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985).Google Scholar
[19] Hems, J., Semiconductor International 13 (12), 100 (1990).Google Scholar
[20] Nakasaki, Y., Suguro, K., Shima, S., Kashiwagi, M., J. Appl. Phys. 64, 3263 (1988).Google Scholar
[21] Iwasaki, M., Itoh, H., Katayama, T., Tsukamoto, K., Akasaka, Y. in Tungsten and Other Advanced Metals for VLSI/ULSI Applications V, edited by Wong, S.S. and Furukawa, S. (Mater. Res. Soc. Proc., Pittsburgh, PA 1990) pp. 187193.Google Scholar
[22] McGuire, G.E., Surf. Sci. 76, 130 (1978).Google Scholar
[23] Lo, J.S., Ph.D. Thesis, University of Utah,1973.Google Scholar