Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-19T12:25:15.415Z Has data issue: false hasContentIssue false

Diffusion of Au in Amorphous Si Measured by the Artificial Multilayer Technique

Published online by Cambridge University Press:  25 February 2011

L.M. Goldman
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
D.T. Wu
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
A.V. Wagner
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
F. Spaepen
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
Get access

Abstract

The diffusivity of Au in amorphous Si (a-Si) has been determined in the temperature range 200-260°C using and Ar-ion sputter deposited artificial multilayered films of a-Si and a-Si(0.7at%Au) with repeat lengths between 44 and 48 Å. Diffusion on lengths scales of the order of interatomic spacings have been investigated. The Au diffusivity exhibits an Arrhenius temperature dependence with an activation enthalpy of 1.2eV and shows good agreement with extrapolations of higher temperature Au diffusion data obtained by Rutherford backscattering spectrometry (RBS) in ion-implanted, CVD, and sputter deposited a-Si. The measured Au diffusivity also shows a significant time dependence.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Frank, W., Gösele, U., Mehrer, H. and Seeger, A., in Diffusion in Crystalline Solids, edited by Murch, G.E. and Nowick, A.S. (Academic Press, Orlando, 1984) p. 63.Google Scholar
2 Seeger, A. and Chik, K.P., Phys. Status Solidi 29, 455 (1968).Google Scholar
3 Reinelt, M. and Kalbitzer, S., Journal De Physique, C–4, C4843 (1981).Google Scholar
4 Elliman, R.G., Gibson, J.M., Jacobson, D.C., Poate, J.M. and Williams, J.S., Appl. Phys. Lett. 46, 478 (1985).Google Scholar
5 Poate, J.M., Jacobson, D.C., Williams, J.S., Elliman, R.G. and Boerma, D.O., Nucl. Instr. and Meth. B19/20, 480 (1987).Google Scholar
6 Park, B., Spaepen, F., Poate, J.M., Priolo, F., Jacobson, D.C., Pai, C.S., White, A.E. and Short, K.T., Mater. Res. Soc. Proc. 103, 173 (1988).Google Scholar
7 Park, B., Spaepen, F., Poate, J.M., Priolo, F. and Jacobson, D.C., Mater. Res. Soc. Proc. 128, 243 (1989).Google Scholar
8 Park, B., Ph.D. Thesis (Harvard University, 1989).Google Scholar
9 Cook, H.E. and Hilliard, J.E., J. Appl. Phys. 40, 2191 (1969).Google Scholar
10 Rosenblum, M.P., Spaepen, F. and Turnbull, D., Appl. Phys. Lett. 37, 184 (1980).Google Scholar
11 Greer, A.L. and Spaepen, F., in Synthetic Modulated Structures, edited by Chang, L.L. and Giessen, B.C. (Academic Press, New York, 1985) p. 419.Google Scholar
12 Spaepen, F., Greer, A.L., Kelton, K.F. and Bell, J.L., Rev. Sci. Instrum. 56, 1340 (1985).Google Scholar
13 Sugawara, M., Kondo, M., Yamazaki, S. and Nakajima, K., Appl. Phys. Lett. 52, 742 (1988). The index of refraction of pure c-Si was used and the correction was approximately 1 Å.Google Scholar
14 Kadin, A.M. and Keem, J.E., Scripta Metall. 20, 440 (1986).Google Scholar
15 Underwood, J.H. and Barbee, T.W. Jr., Applied Optics 20, 3027 (1981).Google Scholar
16 The effect is due to decreased absorption and will result in increased intensity provided the film has a corresponding increase in the number of layers.Google Scholar
17 Paulson, W.M. and Hilliard, J.E., J. Appl. Phys. 48, 2117 (1977).Google Scholar
18 Atzmon, M. and Spaepen, F., Mater. Res. Soc. Proc. 80, 55 (1987).Google Scholar
19 Wu, D.T., Wagner, A.V., Nygren, E. and Spaepen, F., unpublished results.Google Scholar
20 Calcagno, L., Campisano, S.U. and Coffa, S., J. Appl. Phys. 66, 1874 (1989).Google Scholar
21 Fortner, J. and Lannin, J.S., Phys. Rev. B. 37, 10154 (1988).Google Scholar
22 Taub, A.I. and Spaepen, F., Acta Metall. 28, 1781 (1980).Google Scholar
23 Fleming, R.M., McWhan, D.B., Gossard, A.C., Wiegmann, W. and Logan, R.A., J. Appl. Phys. 51, 357 (1980).Google Scholar
24 Frank, F.C. and Turnbull, D., Phys. Rev. 104, 617 (1956).Google Scholar
25 Gösele, U., Frank, W. and Seeger, A., Appl. Phys. 23, 361 (1980).Google Scholar
26 Stolwijk, N.A., Hölzl, J., Frank, W., Weber, E.R. and Mehrer, H., Appl. Phys. A 39, 37 (1986).Google Scholar
27 Roorda, S., Sinke, W.C., Poate, J.M., Jacobson, D.C., Dierker, S., Dennis, B.S., Eaglesham, D.J. and Spaepen, F., to be published, Mater. Res. Soc. Proc. 157, (1990).Google Scholar
28 Donovan, E.P., Spaepen, F., Poate, J.M. and Jacobson, D.C., Appl. Phys. Lett. 55, 1516 (1989).Google Scholar
29 The effective Au diffusivity in highly dislocated Si from [26], D=44exp(-2.23/kT) cm2/sec.Google Scholar