Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-x2fsp Total loading time: 0.722 Render date: 2022-11-26T20:11:20.752Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Dialkylenecarbonate-Bridged Polysilsesquioxanes: Hybrid Organic-Inorganic Sol-Gels with a Thermally Labile Bridging Group

Published online by Cambridge University Press:  10 February 2011

Douglas A. Loy
Affiliation:
Catalysts Department, Sandia National Laboratories, Albuquerque, NM 87185–1407, daloy@sandia.gov
James V. Beach
Affiliation:
Catalysts Department, Sandia National Laboratories, Albuquerque, NM 87185–1407, daloy@sandia.gov
Brigitta M. Baugher
Affiliation:
Catalysts Department, Sandia National Laboratories, Albuquerque, NM 87185–1407, daloy@sandia.gov
Roger A. Assink
Affiliation:
Catalysts Department, Sandia National Laboratories, Albuquerque, NM 87185–1407, daloy@sandia.gov
Kenneth J. Shea
Affiliation:
Department of Chemistry, University of California, Irvine, CA 92717–2025
Joseph Tran
Affiliation:
Department of Chemistry, University of California, Irvine, CA 92717–2025
James H. Small
Affiliation:
Polymers and Coatings Group, MST-7, Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

In this paper, we introduce a new approach for altering the properties of bridged polysilsesquioxane xerogels using post-processing modification of the polymeric network. The bridging organic group contains latent functionalities that can be liberated thermally, photochemically, or by chemical means after the gel has been processed to a xerogel. These modifications can produce changes in density, solubility, porosity, and or chemical properties of the material. Since every monomer possesses two latent functional groups, the technique allows for the introduction of high levels of functionality in hybrid organic-inorganic materials. Dialkylenecarbonate-bridged polysilsesquioxane gels were prepared by the sol-gel polymerization of bis(triethoxysilylpropyl)carbonate (1) and bis(triethoxysilylisobutyl)-carbonate (2). Thermal treatment of the resulting non-porous xerogels and aerogels at 300–350°C resulted in quantitative decarboxylation of the dialkylenecarbonate bridging groups to give new hydroxyalkyl and olefinic substituted polysilsesquioxane monolithic xerogels and aerogels that can not be directly prepared through direct sol-gel polymerization of organotrialkoxysilanes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Loy, D. A.; Shea, K. J. Chem. Rev. 1995, 95(5), 14311442. 10.1021/cr00037a013CrossRefGoogle Scholar
2) Loy, D. A.; Jamison, G. M.; Baugher, B. M.; Russick, E. M.; Assink, R. A.; Prabakar, S.; Shea, K. J. J Non-Cryst. Solids 1995, 186, 4453. 10.1016/0022-3093(95)00032-1CrossRefGoogle Scholar
3) Loy, D. A.; Jamison, G. M.; Baugher, B. M.; Myers, S. A.; Assink, R. A.; Shea, K. J. Chem. Mater. 1996, 8, 656663.10.1021/cm950067zCrossRefGoogle Scholar
4) Loy, D. A.; Carpenter, J. P.; Myers, S. A.; Assink, R. A.; Small, J. H.; Greaves, J.; Shea, K. J. J. Am. Chem. Soc. 1996, 118, 85018502.10.1021/ja961409kCrossRefGoogle Scholar
5) Loy, D. A.; Carpenter, J. P.; Yamanaka, S. A.; McClain, M. D.; Greaves, J.; Hobson, S.; Shea, K. J.Chem. Mater. 1998, 10, 41294140.10.1021/cm9805424CrossRefGoogle Scholar
6) Loy, D. A.; Baugher, B. M.; Schneider, D. A. Polym. Prepr. 1998, 39(2), 418419. Google Scholar
7) Panster, P.; Buder, W.; Kleinschmit, P. Ger. Patent. 3120214 A1 821209, 1982.Google Scholar
8) Levantovskaya, I. I.; Blyumenfel'd, A. B.; Gur'yanova, V. V.; Narinyan, Ts. A.; Arshava, B. M.; Aralyuk, G. V. Plast. Massy 1989, 10, 23–6.Google Scholar
9) Houlihan, F. M.; Bouchard, F.; Frechet, J. M. J.; Willson, C. G. Macromolecules 1986, 19(1), 1319.10.1021/ma00155a003CrossRefGoogle Scholar
10) Fahrenholtz, W. G.; Smith, D. M.; Hua, D. W. J. Non-Cryst. Solids 1992, 144(1), 4552. 10.1016/S0022-3093(05)80381-3CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Dialkylenecarbonate-Bridged Polysilsesquioxanes: Hybrid Organic-Inorganic Sol-Gels with a Thermally Labile Bridging Group
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Dialkylenecarbonate-Bridged Polysilsesquioxanes: Hybrid Organic-Inorganic Sol-Gels with a Thermally Labile Bridging Group
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Dialkylenecarbonate-Bridged Polysilsesquioxanes: Hybrid Organic-Inorganic Sol-Gels with a Thermally Labile Bridging Group
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *