Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-12T06:31:57.993Z Has data issue: false hasContentIssue false

Development of NiAI(B2)-Base Shape Memory Alloys

Published online by Cambridge University Press:  16 February 2011

R. Kainuma
Affiliation:
Department of Materials Science, and Department of Machine Intelligence and Systems Engineering, Faculty of Engineering, Tohoku University, Sendai 980-77, Japan
N. Ono
Affiliation:
Department of Machine Intelligence and Systems Engineering, Faculty of Engineering, Tohoku University, Sendai 980-77, Japan
K. Ishida
Affiliation:
Department of Materials Science, and Department of Machine Intelligence and Systems Engineering, Faculty of Engineering, Tohoku University, Sendai 980-77, Japan
Get access

Abstract

The basic concept underlying the alloy design and microstructural control method utilised in developing a new type of β(B2)+ γ (A1) two-phase ductile shape memory alloy in the Ni-Al base systems is briefly reviewed. The characteristic features of the shape memory effect (SME) in the Ni-Al-Fe and Ni-Al-Fe-Mn alloys are reported with particular reference to the transformation and deformation temperatures, the volume fractions of the γ phase, the morphology of the β + γ structure and the effect of cycling. Training by cycling treatment has a significant effect on the degree of shape recovery and pseudo-elasticity in the β + γ two-phase alloys. These duplex β + γ alloys also exhibit a combination of relatively high damping capacity and high yield strength. It is emphasized that these alloys could be expected to fill the need for a new group of shape memory alloys which operate at elevated temperatures over 100°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Enami, K. and Nenno, S.Metall. Trans., 2, 1487(1971).Google Scholar
2.Smialek, J.L. and Hehemann, R.F.Metall.Trans., 4, 1571 (1973).Google Scholar
3.Kim, Y.D. and Wayman, C.M.Scripta Met., 24, 245 (1990).Google Scholar
4.Liu, C.T.George, E.P. and Mckamey, C.G.Proc. 3rd. Jpn. Int. SAMPE Symp., 1147(1993).Google Scholar
5.Furukawa, S.Inoue, A. and Masumoto, T.Mater.Sci.Eng., 98, 515 (1988).Google Scholar
6.Wallin, M.Johansson, P. and Savage, S.Mater. Sci. Eng., A 133, 307 (1991).Google Scholar
7.Liu, C.T.Sparks, C.J.Horton, J.A.George, E.P.Kao, Ming-Yang and Kunsmann, H. in Shape-Memory Materials and Phenomena – Fundamental Aspects and Applications, edited by Liu, C.T.Kunsmann, H.Otsuka, K. and Wuttig, M. (Mat. Res. Soc. Symp. Proc., 246, Boston, MA, 1991) pp.169176.Google Scholar
8.Ishida, K.Kainuma, R.Ueno, N. and Nishizawa, T.Metall.Trans., 22A, 441(1991).Google Scholar
9.Kainuma, R.Imano, S. and Ishida, K.Proc. 3rd Jpn. Int. SAMPE Symp., 1410(1993).Google Scholar
10.Ishida, K.Kainuma, R. and Nishizawa, T. Symp. Proc. on Mechanical Properties and Phase Transformations of Multi-phase Intermetallic Alloys, TMS, in press.Google Scholar
11.Kainuma, R.Ishida, K. and Nishizawa, T.Metall. Trans.A, 23A, 1147(1992).Google Scholar
12.Kainuma, R.Nakano, H.Oikawa, K.Ishida, K. and Nishizawa, T. in Shape-Memory Materials and Phenomena -Fundamental Aspects and Applications, edited by Liu, C.T.Kunsmann, H.Otsuka, K. and Wuttig, M. (Mat. Res. Soc. Symp. Proc., 246, Boston, MA, 1991) pp.403408.Google Scholar
13.Kainuma, R.Oikawa, K. and Ishida, K.Proc. Int. Symp. Exh. on Shape Memory Materials, Beijing, The Non-ferous Metals Scociety of China, 464(1994).Google Scholar
14. in Ternary Alloys, edited by Petzow, G. and Effenberg, G. (VCH, vol.3, 1990 -vol.8, 1993).Google Scholar
15.Jia, C.C.Ishida, K. and Nishizawa, T.Metall. & Mater. Trans.A, 25A, 473(1994).Google Scholar
16.Au, Y.K. and Wayman, C.M.Scripta Metall., 6, 1209 (1972).Google Scholar
17.Yang, J.H. and Wayman, C.M.Mater. Sci. Eng., A160, 241 (1993).Google Scholar
18.Kainuma, R.Nakano, H. and Ishida, K. To be published.Google Scholar
19.Adnyana, D.N.Metallography, 18, 187 (1985).Google Scholar
20.Enami, K.Hasunuma, J.Nagasawa, A. and Nenno, S.Scripta Metall., 10,879(1976).Google Scholar
21.Ono, N.Tsukahara, A.Kainuma, R. and Ishida, K. To be published.Google Scholar
22.Tuominen, S.M. and Biennann, R.J.J. Metals 38 February, 32(1988).Google Scholar
23.Shugo, Y.Mater. Sci. Forum, 56-58, 631 (1990).Google Scholar
24.Ritchie, I.G. and Pan, Z-L., Metall. Trans., 22A, 607(1991).Google Scholar
25.James, D.W., Mater. Sci. Eng., 4, 1 (1969).Google Scholar
26.Tsugane, Y.Kainuma, R. and Ishida, K. Unpublished work.Google Scholar
27.Nagai, H.Shiota, T.Nishihara, M.Tadokoro, Y. and Togawa, Y.Tetsu to Hagane, 72, 95 (1986).Google Scholar
28.Hashiguti, R.R. and Iwasaki, K.J. Appl. Phys., 39, 2182(1968).Google Scholar
29.Sugimoto, K.Mori, T.Otsuka, K. and Shimizu, K.Scripta Metall., 8, 1341 (1974).Google Scholar