Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-18T02:30:24.311Z Has data issue: false hasContentIssue false

Depth Variation of Transport Parameters in Poly-Si Under Am1 Illumination

Published online by Cambridge University Press:  21 February 2011

Z. Chen
Affiliation:
College of Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
L.C. Burton
Affiliation:
College of Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
Get access

Abstract

Abstract; Grain boundary (GB) recombination is a controlling factor in the electronic properties of polycrystalline silicon. We would like to report computer modeling of the variation of electron transport parameters with depth, under illumination. The GB barrier height (Vg) versus photogeneration rate G and depth are presented, along with the resulting electron lifetime (π), mobility (µ) and diffusion length (L). Under AM1 illumination, Vg increases whereas -π, µ and L all decrease drastically with increasing depth. The GB trap density is used as a parameter, and strongly influences transport parameters in both dark and light cases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Green, M.A., Wenham, S.R., 19th IEEE Photovoltaic Spec. Conf. p6 (1986), also AW Blakers and M.A. Green, Appl. Phys.Lett. 4, 215 (1986).Google Scholar
2.Ted Kamins, Polycvstalline silicon for integrated circuit application Kluwer Academic Publishers(1988).10.1007/978-1-4613-1681-7Google Scholar
3. Kamins, T.I., J.Appl.Phys. 42, 4357 (1971).10.1063/1.1659780Google Scholar
4. Seto, J.Y.W., J.Appl.Phys. 46, 5247 (1975).Google Scholar
5. Seager, C.H. andCastner, T.G. J.Appl.Phys. 4, 3879 (1978).Google Scholar
6. Baccarani, G.B.Ricco andSpadini, G. J.Appl.Phys. 49, 5565 (1980).10.1063/1.324477Google Scholar
7. Martinez, J. andPiqueras, J. Solid-State Electron. 2, 297 (1980).10.1016/0038-1101(80)90196-3Google Scholar
8. Lu, N.C.C., Gerzberg, L, Lu, C.Y. andMeindl, J.D. IEEE Trans. Electron Devices, ED–28 818 (1981).10.1109/T-ED.1981.20437Google Scholar
9 Noor, S. andRogers, C.E. Solid-State Electron, 3, 1157 (1988).Google Scholar
10. Joshi, D.P. andSrivastava, R.S. J.Appl.Phys. 59 2549 (1986).Google Scholar
11. Chen, Z. and Burton, L.C., 21th IEEE Photovoltaic Spec. Conf. to be published (1990).Google Scholar
12. Fossum, J.G. Solid-State Electron, 19, 269,(1976).10.1016/0038-1101(76)90022-8Google Scholar
13. Heieh, H.C. Hu, C. andDrowley, C.I. IEEE Trans, Electron DevicesED-27 883 (1980).Google Scholar
14. Chen, Z. andBurton, L.C. to be published.Google Scholar
15. Mathian, G. Amzil, H. Zehhaf, M. Crest, J.P. Psaila, E. andMartinuzzi, S. Solid-State Electron. 21,1045 (1978).Google Scholar
16. Sze, S.M., Semiconductor Devices, John Wiley & Sons, p49, (1985).Google Scholar