Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-03T18:27:36.059Z Has data issue: false hasContentIssue false

Deposition of Device Quality, Low H Content a-Si:H by the Hot Wire Technique

Published online by Cambridge University Press:  21 February 2011

A. H. Mahan
Affiliation:
Solar Energy Research Institute, Golden, CO 80401, USA
B. P. Nelson
Affiliation:
Solar Energy Research Institute, Golden, CO 80401, USA
S. Salamon
Affiliation:
Solar Energy Research Institute, Golden, CO 80401, USA
R. S. Crandall
Affiliation:
Solar Energy Research Institute, Golden, CO 80401, USA
Get access

Abstract

We report measurements of the Urbach edge, optical bandgap, and ambipolar diffusion length on a series of hydrogenated amorphous silicon (a-Si:H) films deposited by hot-wire-assisted chemical vapor deposition (HW). We compare the properties of these films to those of a series of a-Si:H films deposited by the traditional radio frequency (rf) glow discharge (GD) technique, where we varied the substrate temperature to change the bonded H content (CH). We show for the first time that, as CH is decreased below the value traditionally associated with device quality GD a-Si:H (∼10 at.%), the electronic properties of the GD films deteriorate in the traditional manner while those for the HW samples remain device quality. Properties of these low CH HW samples will be presented and compared to those of GD films containing comparable CH. Because several indications exist that the structure of the HW films is different than that of the GD films, Raman and Small Angle X-Ray Scattering (SAXS) measurements are presented to illustrate structural differences.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsuo, Y. S., Smith, E. B. and Deb, S. K., Appl. Phys. Lett. 51, 1436 (1987).Google Scholar
2. Wiesmann, H., Ghosh, A. K., McMahon, T. and Strongin, M., J. Appl. Phys. 50, 3752 (1979).CrossRefGoogle Scholar
3. Matsumura, H., J. Appl. Phys. 65, 4396 (1989).Google Scholar
4. Doyle, J., Robertson, R., Lin, G. H., He, M. Z. and Gallagher, A., J. Appl. Phys. 64, 3215 (1988).Google Scholar
5. Mahan, A. H., Carapella, J. and Crandall, R. S., SERI Amorphous Silicon Subcontractor's Review Meeting, Golden, CO, June, 1989.Google Scholar
6. Mahan, A. H., Carapella, J., Nelson, B. P., Crandall, R. S., and Balberg, I., J. Appl. Phys. 69 (1991), in press.Google Scholar
7. Stutzmann, M., Phil. Mag. B 60, 531 (1989).CrossRefGoogle Scholar
8. Smith, Z E. and Wagner, S., Phys. Rev. Lett. 59, 688 (1987).Google Scholar
9. Mahan, A. H. and Vanecek, M., SERI Intl. Conf. on Stability of Amorphous Silicon and Solar Cells, Denver CO (Feb. 1991), in pressGoogle Scholar
10. Balberg, I., Delahoy, A. E. and Weakliem, H. A., Appl. Phys. Lett. 53, 992 (1988).Google Scholar
11. Maley, N. and Lannin, J. S., Phys. Rev. B 36, 1146 (1987).CrossRefGoogle Scholar
12. Lucovsky, G., Davidson, B. N., Parsons, G. N. and Wang, C., J Non-cryst. Solids 114, 154 (1989).Google Scholar
13. Hishikawa, Y., Watanabe, K., Tsuda, S., Ohnishi, M., and Kuwano, Y., Jpn. J. Appl. Phys. 24, 385 (1985).Google Scholar
14. Mahan, A. H., Williamson, D. L., Nelson, B. P., and Crandall, R. S., Phys. Rev. B 40, 12024 (1989).Google Scholar