Hostname: page-component-76dd75c94c-5fx6p Total loading time: 0 Render date: 2024-04-30T08:32:40.466Z Has data issue: false hasContentIssue false

Defect Characterization Of InAs Wafers Using Positron Lifetime Spectroscopy

Published online by Cambridge University Press:  15 February 2011

J. Mahony
Affiliation:
Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada L8S 4L7
P. Mascher
Affiliation:
Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada L8S 4L7
Get access

Abstract

Positron lifetime measurements on InAs wafers have shown that the positron bulk lifetime in InAs is 246±2 ps. Most samples exhibit a defect lifetime of 287±6 ps, which is attributable to monovacancy-impurity complexes with a concentration of 7±2×10 16 cm-3. Very heavily doped n-type samples exhibit a defect lifetime of 332–340 ps, characteristic of divacancies. The concentration of these defects is also close to 1017 cm−3. Both types of defects are stable for rapid thermal annealing up to 850 °C, and both defects are neutral. The formation of the divacancytype defects may be correlated with a discrepancy between the carrier concentration and the total

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Luo, L.F., Beresford, R., Wang, W.I., and Munekata, H., Appl. Phys. Lett. 55, 789 (1989).Google Scholar
2. Chen, J.F., Yang, L., Wu, M.C., Chu, S.N.G., and Cho, A.Y., J. Cryst. Growth 111, 659 (1991).Google Scholar
3. Pekarik, J.J., Kroemer, H., and English, J.H., J. Vac. Sci. Technol. B 10, 1032 (1992).Google Scholar
4. Kastalsky, A., Goldman, V.J., and Abeles, J.H., Appl. Phys. Lett. 59, 2636 (1991).Google Scholar
5. Dannefaer, S., J. Phys. C 15, 599 (1982).Google Scholar
6. Brudnyi, V.N., Vorobiev, S.A., and Tsoi, A.A., Phys. Status Solidi A 72, 529 (1982).Google Scholar
7. Dlubek, G. and Brüimmer, O., Ann. Phys. (Leipzig) 43, 178 (1986).Google Scholar
8. Misheva, M., Pasajov, G., Tubmev, G., and Yakimova, R., in New Developments in Semiconductor Physics, Proceedings of the Third Summer School, Szeged, Hungary, 31 Aug. - 4 Sept., 1987 (Springer-Verlag, Berlin, 1988), p. 232.Google Scholar
9. Kirkegaard, P., Pedersen, N.J., and Eldrup, M., PATFIT-88: A Data-Processing System for Positron Annihilation Spectra on Mainframe and Personal Computers (Risø National Laboratory, Denmark 1989).Google Scholar
10. Mahony, J., Mascher, P., and Puff, W., J. Appl. Phys. 80, 2712 (1996).Google Scholar
11. West, R.N., Adv. Phys. 22, 263 (1973).Google Scholar
12. Puska, M.J., Mäkinen, S., Manninen, M., and Nieminen, R.M., Phys. Rev. B 39, 7666 (1989).Google Scholar
13. Puska, M.J., J. Phys.: Condens. Matter 1, 7347 (1989).Google Scholar
14. Mahony, J. and Mascher, P., submitted to Phys. Rev. BGoogle Scholar
15. Puska, M.J. and Nieminen, R.M., Rev. Mod. Phys. 66, 841 (1994)Google Scholar
16. Dannefaer, S., Mascher, P., and Kerr, D., J. Phys.: Condens. Matter 1, 3213 (1989).Google Scholar
17. Morozov, A.N., Bublik, V.T., Grigor'eva, T.P., Karatev, V.V., and Mil'vidskii, M.G., Sov. Phys. Crystallogr. 30, 317 (1985).Google Scholar
18. Talis, L.D., Karataev, V.V., and Mil'vidskii, M.G., Inorg. Mater. 25, 1362 (1990).Google Scholar
19. Bublik, V.T., Karataev, V.V., Mil'vidskii, M.G., Nemtsova, G.A., Perova, L.N., Stolyarov, O.G., and Yugova, T.G., Sov. Phys. Crystallogr. 24, 621 (1979).Google Scholar
20. Lee, H.G., Fischer, R.J., Hopkins, L.C., and Cho, A.Y., J. Cryst. Growth 130, 416 (1993).Google Scholar
21. Bublik, V.T., Karataev, V.V., Mil'vidskii, M.G., Nemtsova, G.A., Perova, L.N., Stolyarov, O.G., and Yugova, T.G., Sov. Phys. Crystallogr. 24, 302 (1979).Google Scholar