Skip to main content Accessibility help
×
Home

Current Understanding and Modeling of B Diffusion and Activation Anomalies in Preamorphized Ultra-Shallow Junctions

Published online by Cambridge University Press:  17 March 2011


B. Colombeau
Affiliation:
Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK
A.J. Smith
Affiliation:
Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK
N.E.B. Cowern
Affiliation:
Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK
B.J. Pawlak
Affiliation:
Philips Research Leuven, Kapeldreef 75, B-3001 Leuven, Belgium
F. Cristiano
Affiliation:
LAAS/CNRS, 7 av. du col. Roche, 31077 Toulouse, France
R. Duffy
Affiliation:
Philips Research Leuven, Kapeldreef 75, B-3001 Leuven, Belgium
A. Claverie
Affiliation:
aCEMES/CNRS, 29 rue J. Marvig, 31055Toulouse, France
C.J. Ortiz
Affiliation:
Fraunhofer IISB, Schottkystrasse 10, 91058 Erlangen, Germany
P. Pichler
Affiliation:
Fraunhofer IISB, Schottkystrasse 10, 91058 Erlangen, Germany
E. Lampin
Affiliation:
IEMN/ISEN, UMR CNRS 8520, Villeneuve d'Ascq, France
C. Zechner
Affiliation:
ISE Integrated System Engineering AG, Affolternstr. 52 CH-8050 Zürich, Switzerland

Abstract

The formation of ultra-shallow junctions (USJs) for future integrated circuit technologies requires preamorphization and high dose boron doping to achieve high activation levels and abrupt profiles. To achieve the challenging targets set out in the semiconductor roadmap, it is crucial to reach a much better understanding of the basic physical processes taking place during USJ processing. In this paper we review current understanding of dopant-defect interactions during thermal processing of device structures – interactions which are at the heart of the dopant diffusion and activation anomalies seen in USJs. First, we recall the formation and thermal evolution of End of Range (EOR) defects upon annealing of preamorphized implants (PAI). It is shown that various types of extended defect can be formed: clusters, {113} defects and dislocation loops. During annealing, these defects exchange Si interstitial atoms and evolve following an Ostwald ripening mechanism. We review progress in developing models based on these concepts, which can accurately predict EOR defect evolution and interstitial transport between the defect layer and the surface. Based on this physically based defect modelling approach, combined with fully coupled multi-stream modelling of dopant diffusion, one can perform highly predictive simulations of boron diffusion and de/re-activation in Ge-PAI boron USJs. Agreement between simulations and experimental data is found over a wide range of experimental conditions, clearly indicating that the driving mechanism that degrades boron junction depth and activation is the dissolution of the interstitial defect band. Finally, we briefly outline some promising methods, such as co-implants and/or vacancy engineering, for further down-scaling of source-drain resistance and junction depth.


Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below.

References

1. The International Technology Roadmap for Semiconductors, 2001.Google Scholar
2. Landi, E., Armigliato, A., Solmi, S., Koghler, R., and Wieser, E., Appl. Phys. A :Mater. Sci. Proc. A47, 359.Google Scholar
3. Lindsay, R., Pawlak, B.J., Stolk, P., and Maex, K., Mat. Res. Soc. Symp. Proc. Vol 717, C2.1 (2002).CrossRefGoogle Scholar
4. Lindsay, R., Pawlak, B.J., Kittl, J.A., Henson, K., Giangrandi, S., Duffy, R., Surdeanu, R., Vandervorst, W., Pages, X., Jeugd, K. van der, Stolk, P., and Maex, K., Seventh International Workshop on: Fabrication, Characterization, and Modeling of Ultra-Shallow Doping Profiles in Semiconductors, Santa Cruz, 65 (2003).Google Scholar
5. Claverie, A., Colombeau, B., Assayag, G. Ben, Bonafos, C., Cristiano, F., Omri, M. and Mauduit, B. de, MSSP, 610, (2000).Google Scholar
6. Lampin, E., Senez, V. and Claverie, A., J. Appl. Phys., 85, 8137 (1999).CrossRefGoogle Scholar
7. Laânab, L., Bergaud, C., Faye, MM., Fauré, J., Martinez, A. and Claverie, A., Mat. Res. Soc. Symp. Proc., 279, 381 (1993).CrossRefGoogle Scholar
8. Claverie, A., Bonafos, C., Alquier, D. and Martinez, A., Solid State Phenomena, V47–48, 195 (1996).Google Scholar
9. Claverie, A., Colombeau, B., Mauduit, B. de, Bonafos, C., Hebras, X., Assayag, G. Ben and Cristiano, F., Appl. Phys. A., 76, 1025 (2003).CrossRefGoogle Scholar
10. Bonafos, C., Mathiot, D. and Claverie, A., J. Appl. Phys., 83, 3008 (1998).CrossRefGoogle Scholar
11. Cowern, N.E.B. et al. , Phys. Rev. Lett. 82, 4460 (1999) and Mat. Sci. Semicond. Process. 2, 369 (1999)CrossRefGoogle Scholar
12. Eaglesham, D.J., Stolk, P.A., Gossmann, H.J. and Poate, J.M., Appl. Phys. Lett., 65, 2305 (1994).CrossRefGoogle Scholar
13. Cowern, N.E.B., Alquier, D., Omri, M., Claverie, A., and Nejim, A., Nucl. Instrum. Meth. Phys. Res. B 148, 257 (1999).CrossRefGoogle Scholar
14. Colombeau, B., PhD Thesis, University of Toulouse (2001).Google Scholar
15. Cowern, N.E.B., Jansen, K.T.F., Walle, G.F.A. van de and Gravesteijn, D.J., Phys. Rev. Lett. 65, 2434 (1990), Phys. Rev. Lett. 67, 212 (1991).CrossRefGoogle Scholar
16. Caturla, M.J., Johnson, M.D. and Rubia, T. Diaz de la, Appl. Phys. Lett., 72, 2736 (1998).CrossRefGoogle Scholar
17. Lamrani, Y., Cristiano, F., Colombeau, B., Scheid, E., Calvo, P., Schäfer, H. and Claverie, A., Nucl. Inst Meth. B., 216, 95 (2004).CrossRefGoogle Scholar
18. Jain, S.C., Schoenmaker, W., Lindsay, R., Stolk, P., Decoutere, S., Willander, M. and Maes, H. E., J. Appl. Phys, 91, 8919 (2002).CrossRefGoogle Scholar
19. Chao, H.S., Crowder, S.W., Griffin, P.B. and Plummer, J.D., J. Appl. Phys., 79 (1996) 2352.CrossRefGoogle Scholar
20. Uematsu, M., Mat. Res. Soc. Symp. Proc. 717, C5.1 (2002)CrossRefGoogle Scholar
21. Lampin, E., Cristiano, F., Lamrani, Y., Claverie, A., Colombeau, B. and Cowern, N.E.B., J. Appl. Phys., 94, 7520 (2003).CrossRefGoogle Scholar
22. Duffy, R., Venezia, V.C., Heringa, A., Hüsken, T.W.T., Hopstaken, M.J.P., Cowern, N.E.B., Griffin, P.B., and Wang, C.C., Appl. Phys. Lett., 82, 3647 (2003).CrossRefGoogle Scholar
23. Pawlak, B.J. et al. , Seventh International Workshop on: Fabrication, Characterization, and Modeling of Ultra- Shallow Doping Profiles in Semiconductors, Santa Cruz, 227 (2003).Google Scholar
24. Pawlak, B.J., Surdeanu, R., Colombeau, B., Smith, A.J., Cowern, N.E.B., Lindsay, R., Vandervost, W., Brijs, B., Richard, O. and Cristiano, F., Appl. Phys. Lett., 84, 2005 (2004).CrossRefGoogle Scholar
25. Solmi, S., Landi, E. and Baruffaldi, F., J. Appl. Phys. 68, 3250 (1990).CrossRefGoogle Scholar
26. Landi, E., Armigliato, A., Solmi, S., Koghler, R. and Wieser, E., Appl. Phys. A.: Mater. Sci. Proc. A47, 359 (1998).Google Scholar
27. Aboy, M., Pelaz, L., Marques, L.A., Barbolla, J., Mokhberi, A., Takamura, Y., Griffin, P.B., and Plummer, J., Appl. Phys. Lett. 83, 4166 (2003).CrossRefGoogle Scholar
28. Mokhberi, A. et al. , IEDM Proceedings (2002).Google Scholar
29. Mattoni, A. and Colombo, L., Phys. Rev. B., 69. 045204 (2004).CrossRefGoogle Scholar
30. Colombeau, B., Cowern, N.E.B., Smith, A.J. and Pawlak, B.J., to be submitted to J. Appl. Phys.Google Scholar
31. Smith, A.J., Colombeau, B., Cowern, N.E.B. and Sealy, B., private communication.Google Scholar
32. Duffy, R., private communication.Google Scholar
33. Nejim, A. and Sealy, B., Semicond. Sci. Technol. 18, 839 (2003).CrossRefGoogle Scholar
34. Shao, L., Liu, J., Chen, Q. Y., Chu, W.K., Mat. Sc. Eng. R42, 65 (2003).Google Scholar
35. Kalyanraman, R., Venezia, V.C., Pelaz, L., Haynes, T.E., Gossmann, HJ and Rafferty, C.S., Appl. Phys. Lett., 82, 215 (2003).Google Scholar
36. Smith, A.J., Colombeau, B., Cowern, N.E.B., Collart, E., Gwilliam, R. and Sealy, B.J., to be submitted to Appl. Phys. Lett.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 23 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th December 2020. This data will be updated every 24 hours.

Hostname: page-component-b4dcdd7-fbgh5 Total loading time: 0.22 Render date: 2020-12-05T23:29:19.293Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Dec 05 2020 23:01:20 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Current Understanding and Modeling of B Diffusion and Activation Anomalies in Preamorphized Ultra-Shallow Junctions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Current Understanding and Modeling of B Diffusion and Activation Anomalies in Preamorphized Ultra-Shallow Junctions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Current Understanding and Modeling of B Diffusion and Activation Anomalies in Preamorphized Ultra-Shallow Junctions
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *