Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-30T11:58:54.989Z Has data issue: false hasContentIssue false

Cryosol Synthesis of Nanocomposite Materials

Published online by Cambridge University Press:  16 February 2011

S.V. Kalinin
Affiliation:
Now at the Dept. Mat. Sci. Eng., University of Pennsylvania, Philadelphia, PA 19104
A.A. Vertegel
Affiliation:
Dept. of Chemistry, Moscow State University, 119899, Moscow, RUSSIAal@auinorg.chem.msu.ru
Yu.D. Tretyakov
Affiliation:
Dept. of Chemistry, Moscow State University, 119899, Moscow, RUSSIAal@auinorg.chem.msu.ru
Get access

Abstract

Formation of nanocomposites in the course of hydrolytic polycondensation processes is investigated. Depending on the order of particle-formation and matrix-formation steps three possible synthetic strategies are studied. The freeze-drying technique is used for dehydration of the gel precursor to avoid the redistribution of a soluble component. Heat treatment or chemical modification of the cryogel yields the desired nanomaterial.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Siegel, R.W., Nanophase Materials, Synthesis, Structure and Properties, in Springer Series in Materials Sciences, Ed. Fujita, F.E., Springer Verlag, p. 65, 1994 Google Scholar
2. Nanoparticles in Solids and Solutions, Eds. Fendler, J.H., Dekany, I., Kluwer Acad. Publ., 1996.Google Scholar
3. Leslie-Pelecky, D.L., Rieke, R.D., Chem. Mater., 1996, 8, 1770.Google Scholar
4. Nogami, M., in Sol-Gel Optics, Processing and Applications, Ed. Klein, Lisa C., Kluwer Acad. Publ., p. 329, 1994.Google Scholar
5. De, G., Tapfer, L., Catalano, M., Battaglin, G., Caccavale, F., Gonella, F., Mazzoldi, P., Haglund, R.F. Jr., Appl. Phys. Lett., 1996, 68, 3820.Google Scholar
6. Schmidt, H., in Sol-Gel Optics, Processing and Applications, Ed. Klein, Lisa C., Kluwer Acad. Publ. p. 451, 1994.Google Scholar
7. Henry, M., Joliet, J.P., Livage, J., Aqueous Chemistry of Metal Cations: Hydrolysis, Condensation and Complexation, Structure and Bonding, Springer-Verlag Berlin Heidelberg, p. 153, 1992.Google Scholar
8. Krivorutchko, O.P. Theoretical Bases for the Preparation of Carriers and Catalysts from Non-soluble Hydroxides, D.Sc. Thesis., Novosibirsk, 1990.Google Scholar
9. Kalinin, S.V., Vertegel, A.A., Oleynikov, N.N., Tretyakov, Yu.D., J. Non-Cryst. Solids, v181, p. 146, 1995.Google Scholar
10. Kalinin, S.V., Metlin, Yu.G., Oleynikov, N.N., Tretyakov, Yu.D., Vertegel, A.A., J. Mater. Res. v13, No. 4, p. 901, 1998.Google Scholar
11. Brinker, C.J., Scherer, G.W., Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing, Acad. Press, San Diego, CA 1990.Google Scholar
12. Tabuchi, M., Ado, K., Sakaebe, H., Masquelier, C., Kageyama, H., Nakamura, O., Solid St. Ionics, 79, p. 220, 1995.Google Scholar
13. Johnson, D.W. Jr., Gallagher, P.K., Schnettler, F.J. and Vogel, E.M., Ceramic Bulletin, 56(9), p. 785, 1977.Google Scholar
14. Tretyakov, Yu.D., Oleynikov, N.N., Shlyahtin, O.A., Cryochemical Synthesis of Advanced Materials, Chapman & Hall, London, 1997.Google Scholar