Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T04:37:52.075Z Has data issue: false hasContentIssue false

Coupling Between Precipitation and Plastic Deformation During Electromigration in a Passivated Al (0.5wt%Cu) Interconnect

Published online by Cambridge University Press:  17 March 2011

R.I. Barabash
Affiliation:
Metals & Ceramics Divisions, Oak Ridge National Laboratory, Oak Ridge TN 37831
G.E. Ice
Affiliation:
Metals & Ceramics Divisions, Oak Ridge National Laboratory, Oak Ridge TN 37831
N. Tamura
Affiliation:
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720
B.C. Valek
Affiliation:
Dept. Materials Science & Engineering, Stanford University, Stanford CA 94305
R. Spolenak
Affiliation:
Max Planck Institut fur Metallforschung, Heisenbergstrasse 3, D-7056 Stuttgart, Germany
J.C. Bravman
Affiliation:
Dept. Materials Science & Engineering, Stanford University, Stanford CA 94305
J.R. Patel
Affiliation:
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720
Get access

Abstract

In the present paper the evolution of the dislocation structure during electromigration in different regions along the Al(Cu) interconnect line is considered. It is shown that plastic deformation increases in the regions close to cathode end of the interconnect line. A coupling between the dissolution, growth and re-precipitation of Al2Cu precipitates and the electromigration-induced plastic deformation of grains in interconnects is observed. Possible mechanism of the Cu doping effect on the improved electromigration resistance of the Al(Cu) interconnects is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Blech, I.A., J. Appl. Phys., 47, 1203 (1976).CrossRefGoogle Scholar
2 Thompson, C.V. and Lloyd, J.R., Mater. Res. Soc., Bull. 18, 19 (1993).CrossRefGoogle Scholar
3 Rosenberg, R., JVST, 9, 1, 263 (1972)Google Scholar
4 Hu, C.-K., Small, M.B., Ho, P.S., J. Appl. Phys. 74,(2), 969 (1993)CrossRefGoogle Scholar
5 Korhonen, M.A., Borgesen, P., Tu, K.N., and Li, C.-Y., J. Appl. Phys. 73, 3790 (1993).CrossRefGoogle Scholar
6 MacDowell, A.A., Celestre, R.S., Tamura, N., Spolenak, R., Valek, B.C., Brown, W.L., Bravman, J.C., Padmore, H.A., Batterman, B.W. and Patel, J.R., Nuclear Instruments and Methods in Physics Research A 467–468, 936 (2001).CrossRefGoogle Scholar
7 Ice, G.E. and Larson, B. C., Advanced Engineering Materials, 2, 10, 643 (2002).3.0.CO;2-U>CrossRefGoogle Scholar
8 Larson, B.C., Yang, Wenge, Ice, G.E., Budai, J.D. and Tischler, J.Z., Nature, 415, 887 (2002).CrossRefGoogle Scholar
9 Wang, P.-C., Noyan, I. C., Kaldor, S. K., Jordan-Sweet, J. L., Liniger, E. G., and Hu, C.-K., Appl. Phys. Lett., 78, 2712 (2001).CrossRefGoogle Scholar
10 Wang, P. C., Cargill, G. S. III, Noyan, I. C., Hu, C. K., Appl. Phys. Lett.,72, 1296 (1998).CrossRefGoogle Scholar
11 Tamura, N., MacDowell, A.A., Celestre, R.S., Padmore, H.A., Valek, B.C., Bravman, J.C., Spolenak, R., Brown, W.L., Marieb, T., Fujimoto, H., B.W. Batterman and Patel, J.R., Appl. Phys. Lett. 80, 3724 (2002).CrossRefGoogle Scholar
12 Tamura, N.; Spolenak, R., Valek, B.C.; Manceau, A.; Chang, M. Meier; Celestre, R.S.; MacDowell, A.A.; Padmore, H.A. and Patel, J.R.; Review of Scientific Instruments 73, 1369 (2002).CrossRefGoogle Scholar
13 Valek, B.C., Tamura, N., Spolenak, R., Bravman, J.C., MacDowell, A.A., Celestre, R.S., Padmore, H.A., Brown, W.L., Batterman, B.W. and Patel, J.R., Appl. Phys. Lett. 81, 4168 (2002).CrossRefGoogle Scholar
14 Valek, B.C., Tamura, N., Spolenak, R.; Caldwell, W.W., MacDowell, A.A.; Celestre, R.S.; Padmore, H.A.; Bravman, J.C.; Batterman, B.W.; Nix, W.D., Patel, J.R., J. Appl. Physics, 94, 6, 3757 (2003).CrossRefGoogle Scholar
15 Barabash, R.I., Ice, G.E., Tamura, N., Valek, B.C., Bravman, J. C., Spolenak, R. and Patel, J.R., Mater.Res.Soc.Symp.Proc.,738, (2003)Google Scholar
16 Barabash, R.I., Ice, G.E., Tamura, N., Valek, B.C., Bravman, J. C., Spolenak, R. and Patel, J.R., J. Appl. Physics, 93, 5701 (2003).CrossRefGoogle Scholar
17 Barabash, R.I., Ice, G.E., Tamura, N., Valek, B.C., Bravman, J. C., Spolenak, R. and Patel, J.R., Mater.Res.Soc.Symp.Proc.,766, 107 (2003).CrossRefGoogle Scholar
18 Witt, C., Volkert, C., Arzt, E., Acta Materialia, 51, 49 (2003).CrossRefGoogle Scholar
19 Spolenak, R., Kraft, O., and Arzt, E., AIP. Con. Proc., 491, 126 (1999).CrossRefGoogle Scholar
20 Spolenak, R., PhD Thesis, Stuttgart, (1999)Google Scholar
21 Matsubara, E. and Cohen, J.B., Acta Metall. 31,12,21292135 (1983)CrossRefGoogle Scholar
22 Matsubara, E. and Cohen, J.B., Acta Metall. 33,11,19451955,1957-1969 (1985)CrossRefGoogle Scholar
23 Gerold, V., Scripta metallurgica,22, 927932, (1988)CrossRefGoogle Scholar
24 Muller, P.P., Schonfeld, B., Kostorz, G. and Buhrer, W., Acta metall, 37, 8, 21252132 (1989)CrossRefGoogle Scholar
25 Haeffner, D., Winholtz, A. Jr, and Cohen, J.B., Scripta Metallurgica, 22, 18211822, (1988)CrossRefGoogle Scholar
26 Auvray, X., Georgopolus, P. and Cohen, J.B., Acta metal. 29,1669 (1983)Google Scholar
27 Osamura, K., Murakami, Y., Sato, T., Takahashi, T., Abe, T. and Hirano, K., Acta metal. 31, 1669 (1983)CrossRefGoogle Scholar
28 Wolverton, C., Acta mater. 49, 31293142, (2001)CrossRefGoogle Scholar
29 Dekker, J.P., Volkert, C.A., Arzt, E., and Gumbsch, P., PRL,87(3), 035901 (2001)CrossRefGoogle Scholar
30 Geguzin, I., Krivoglaz, M., Electromigration of macriscopic inclusions in solids, Naukova Dumka, Kiev, (1972)Google Scholar
31 Darken, L.S. Trans AIME 175,184 (1948).Google Scholar
32 Ziman, J., principles of the theory of solids, Cambridge University Press, (1972)CrossRefGoogle Scholar
33 Gantmaher, V., Levinson, I., Scattering of electrons in metals and semiconductors, Nauka, Moscow (1984)Google Scholar