Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T04:54:17.667Z Has data issue: false hasContentIssue false

Counteracting Effects of Boron and Hydrogen on Ductility In Ni3Al

Published online by Cambridge University Press:  22 February 2011

T. K. Chaki*
Affiliation:
State University of New York, Department of Mechanical and Aerospace Engineering, Buffalo, NY 14260
Get access

Abstract

A minute amount of boron doping in polycrystalline Ni3Al can suppress embrit-tlement due to environmental moisture. However, B is ineffective in suppressing hydrogen embrittlement due to cathodic charging. A mechanism is proposed to explain this seemingly contradictory dichotomy. Grain boundaries in B-free Ni3Al contain crack-like microcavities, to the tips of which atomic hydrogen, generated by the reaction of moisture with Al, can diffuse and cause embrittlement. In B-doped Ni3Al interstitial B atoms interact with Ni atoms and reduce the strength of directional bonding between Ni and Al atoms, such that the atoms can relax easily to close up the microcavities, thereby reducing environmental embrittlement. In the presence of a large amount of hydrogen, introduced by cathodic charging, microcracks can be nucleated in B-doped Ni3Al by hydrogen-enhanced dislocation activity, and then hydrogen embrittlement can proceed by enhanced plasticity at the crack tips.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Copley, S.M. and Kear, B.H., Trans. Metall. Soc. AIME 239, 977 (1967).Google Scholar
2. Ogura, T., Hanada, S., Masumoto, T., and Izumi, O., Metall. Trans. A, 16, 441 (1985).Google Scholar
3. Aoki, K. and Izumi, O., Japan, J. Inst. Metals 43, 1190 (1979).Google Scholar
4. Liu, C.T., White, C.L., and Horton, J.A., Acta Metall. 33, 213 (1985).Google Scholar
5. Horton, J.A. and Miller, M.K., Acta Metall. 35, 133 (1987).Google Scholar
6. Masahashi, N., Takasugi, T., and Izumi, O., Acta Metall. 36, 1823 (1988).Google Scholar
7. Wan, X.J., Zhu, J.H., and Jing, K.L., Scripta Metall. Mater. 26, 473 (1992).Google Scholar
8. Liu, C.T., Scripta Metall. Mater. 27, 25 (1992).Google Scholar
9. Speidel, M.O. in Hydrogen in Metals, edited by Bernstein, I.M. and Thompson, A.W. (American Society of Metals, Metals Park, OH, 1974), pp. 249276.Google Scholar
10. Kuruvilla, A.K. and Stoloff, N.S., Scripta Metall. 19, 83 (1985).Google Scholar
11. Li, H. and Chaki, T.K., Acta Metall. Mater. 41, 1979 (1993).Google Scholar
12. Otterbein, U., Hofmann, S., and Ruhle, M. in High-Temperature Ordered Intermetallic Alloys V, edited by Baker, I., Darolia, R., Whittenberger, J.D., and Yoo, M.H. (Materials Research Society, Pittsburgh, PA, 1993), pp. 183188.Google Scholar
13. Schulson, E.M., Weihs, T.P., Baker, I., Frost, H.J., and Horton, J.A., Acta Metall. 34, 1395 (1986).Google Scholar
14. King, A.H. and Yoo, M.H., Scripta Metall. 21, 1115 (1987).Google Scholar
15. Swiatnicki, W.A. and Grabski, M.W., Acta Metall. 37, 1307 (1989).Google Scholar
16. Krzanowski, J.E., Scripta Metall. 23, 1219 (1989).Google Scholar
17. George, E.P., Liu, C.T., and Padgett, R.A., Scripta Metall. 23, 979 (1989).Google Scholar
18. Forwood, C.T. and Gibson, M.A., Philos. Mag. A, 66, 1121 (1992).Google Scholar
19. Chaki, T.K., Philos. Mag. Lett. 61, 5 (1990); 63, 123 (1991).Google Scholar
20. Chaki, T.K., Mater. Sci. Eng. A, 190, 109 (1995).Google Scholar
21. Takasugi, T. and Izumi, O., Acta Metall. 31, 1187 (1983).Google Scholar
22. Kruisman, J.J., Vitek, V., and De Hosson, J.Th.M., Acta Metall. 36, 2729 (1988).Google Scholar
23. Dasgupta, A., Smedskjaer, L.C., Legnini, D.G., and Siegel, R.W., Mater. Lett. 3, 457 (1985).Google Scholar
24. Fu, C.L. and Yoo, M.H., Mater. Chem. Phys. 32, 25 (1992).Google Scholar
25. Tabata, T. and Birnbaum, H.K., Scripta Metall. 18, 231 (1984).Google Scholar
26. Beachem, C.D., Metall. Trans. 3, 437 (1972).Google Scholar
27. George, E.P., Liu, C.T., and Pope, D.P., Scripta Metall. Mater. 27, 365 (1992).Google Scholar
28. Watanabe, T., J. Phys. (Paris) 49, C5507 (1988).Google Scholar
29. Watanabe, T., Kawamata, Y., and Karashima, S., Trans. J.I.M. 27, 601 (1986).Google Scholar
30. Lin, H., George, E.P., and Pope, D.P., Materials Research Society Symposium Proceedings Series 364 (present volume), in press (1995).Google Scholar
31. Li, J.C.M., Oriani, R.A., and Darken, L.S., Z. Phys. Chem. Neue Folge 49, 271 (1966).Google Scholar
32. Li, J.C.M., Park, C.G., and Ohr, S.M., Scripta Metall. 20, 371 (1986).Google Scholar
33. Wan, X.J., Zhu, J.H., Jing, K.L., and Liu, C.T., Scripta Metall. Mater. 31, 677 (1994).Google Scholar