Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-16T18:41:31.615Z Has data issue: false hasContentIssue false

Control of A Running H2/02 Fuel Cell With Filled Polymeric Membranes by IMPEDANCE SPECTROSCOPY

Published online by Cambridge University Press:  10 February 2011

C. Poinsignon
Affiliation:
LEPMI-ENSEEG Domaine Universitaire BP 75 F- 38402 St Martin d′Hères Cedex, poinsign@inpg.fr
B Le gorrec
Affiliation:
LEPMI-ENSEEG Domaine Universitaire BP 75 F- 38402 St Martin d′Hères Cedex, poinsign@inpg.fr
G. Vitter
Affiliation:
LEPMI-ENSEEG Domaine Universitaire BP 75 F- 38402 St Martin d′Hères Cedex, poinsign@inpg.fr
C. Montella
Affiliation:
LEPMI-ENSEEG Domaine Universitaire BP 75 F- 38402 St Martin d′Hères Cedex, poinsign@inpg.fr
J. P Diard
Affiliation:
LEPMI-ENSEEG Domaine Universitaire BP 75 F- 38402 St Martin d′Hères Cedex, poinsign@inpg.fr
Get access

Abstract

Performances of a H2/O2 polymeric electrolyte fuel cell running at 80°C under 3 bars of gas pressure and using a new filled thermostable ionomeric membrane [sulfonated polysulfone (SPS) filled with phosphatoantimonic acid particles] are analysed with a recent experimental method established for impedance measurements of electrochemical batteries during discharge. A classical impedance-measurement set controls under sinusoidal current perturbation a PEMFC connected in parallel to the load into which it discharges. The impedance diagrams present at high frequencies an inductive behaviour analogous to that observed for batteries, one or two capacitive arcs. The internal resistance of the PEMFC can be estimated. The results demonstrate the possibility to study with classical equipment the impedance of high-capacity and low-impedance FC during their discharge through a constant load.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Diard, J.P., Gorrec, B. Le, Landau, P., Montella, C., Electrochim. Acta 42 (1997) 3417.Google Scholar
2. Diard, J.P., Gorrec, B. Le, Montella, C., J. Power Sources, 70 (1998) 78 Google Scholar
3. Diard, J.P., Gorrec, B. Le, Montella, C., Poinsignon, C., Vitter, G.. J. Power Sources 74 (1998) 244245.Google Scholar
4. Baradie, B., Poinsignon, C., Sanchez, J.Y., Piffard, Y., Foscallo, D., Vitter, G., Bestaoui, N., Vaujany, M., Denoyelle, A., Delabouglise, D.. J. Power Sources 74 (1998) 816.Google Scholar
5. Piffard, Y., Verbaere, A., Lachgar, A., Deniard, S.C., Tournoux, M., Rev.Chim.Mnira. 23 766 (1986).Google Scholar
6. Deniard-Courant, S., Piffard, Y., Barboux, P. & Livage, J., Solid State lonics, 27 (1988) 189.Google Scholar
7. Zschocke, P. and Quellmalz, D., J. Membrane Science 22 (1985) 325332.Google Scholar
8. Poinsignon, C., Amodio, I., Foscallo, D., Sanchez, J.Y.. MRS Fall meeting Proc. 29nov-4dec. 1998 Boston (MA) (1999).Google Scholar
9. Wagner, N., Schurnberger, W., Muller, B. and Lang, M. Electrochim. Acta 43 (1998) 37853793.Google Scholar
10. Paganin, V.A., Olveira, C.L.F., Ticianelli, E.A., Springer, T.E. and Gonzalez, E.R. Electrochim. Acta 43 (1998) 37613766.Google Scholar