Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-11T16:22:18.459Z Has data issue: false hasContentIssue false

Computer Simulation of Energy Dependence of Primary Damage States in SiC

Published online by Cambridge University Press:  21 March 2011

R. Devanathan
Affiliation:
Department of Metallurgical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
F. Gao
Affiliation:
Pacific Northwest National Laboratory, MS K8-93, P. O. Box 999, Richland, WA 99352, USA
W. J. Weber
Affiliation:
Pacific Northwest National Laboratory, MS K8-93, P. O. Box 999, Richland, WA 99352, USA
Get access

Abstract

The primary damage state in 3C-SiC has been comprehensively studied by molecular dynamics using a modified Tersoff potential. The simulations examined damage produced by Si and C primary knock-on atoms (PKA) with energies from 0.25 to 30 keV. The study also generated statistics of defect production by simulating a number of PKAs at each energy. The defect production efficiency decreases with increasing PKA energy, as observed previously in metals. However, the cascade lifetime is very short (less than 1 ps), localized melting does not occur, the defect arrangements are highly dispersed, and the tendency for defects to form clusters is much less compared to the case of metals. Frenkel pairs on the C sublattice are more numerous than Si Frenkel pairs, and 10-20% of the displacements are in the form of anti-site defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Capano, M. A. and Trew, R. J., MRS Bull. 22 (3), 19 (1997).Google Scholar
2. Zink, J. C., Power Engineering, October, 10, (1998).Google Scholar
3. Giancarli, L., Bonal, J. P., Caso, A., G. Le Marois, Morley, N. B., and Salavy, J. F., Fusion. Eng. Des. 41, 165 (1998).Google Scholar
4. Tersoff, J., Phys. Rev. B 39, 5566 (1989); ibid. 49, 16349 (1994).Google Scholar
5. Huang, H., Ghoniem, N. M., Wong, J. K., and Baskes, M. I., Modell. Simul. Mater. Sci. Eng. 3, 615 (1995).Google Scholar
6. Devanathan, R., Rubia, T. Diaz de la, and Weber, W. J., J. Nucl. Mater. 253, 47 (1998).Google Scholar
7. Devanathan, R., Weber, W. J., and Rubia, T. Diaz de la, Nucl. Instr. and Meth. B 141, 118 (1998).Google Scholar
8. Perlado, J. M., Malerba, L., Rubio, A. Sanchez, and Rubia, T. Diaz de la, J. Nucl. Mater. 276, 235 (2000).Google Scholar
9. Devanathan, R. and Weber, W. J., J. Nucl. Mater. 278, 258 (2000).Google Scholar
10. Rubia, T. Diaz de la and Guinan, M. W., J. Nucl. Mater. 174, 151 (1990).Google Scholar
11. Bacon, D. J., Calder, A. F., Gao, F., Kapinos, V. G., and Wooding, S. J., Nucl. Instr. and Meth. B 102, 37 (1995).Google Scholar
12. Gao, F. and Bacon, D. J., Phil. Mag. A 71(1), 43 (1995).Google Scholar
13. Bacon, D. J., Gao, F. and Osetsky, Yu. N., J. Comp.-Aid. Mat. Des. 6, 225 (1999).Google Scholar
14. Bacon, D. J. and Rubia, T. Diaz de la, J. Nucl. Mater. 216, 275 (1994).Google Scholar
15. Norgett, M. J., Robinson, M. T., Torrens, I. M., Nucl. Eng. Des. 33 (1975) 50.Google Scholar
16. Steeds, J. W., Carosella, F., Evans, G. A., Ismail, M. M., Danks, L. R., and Voegeli, W., Proceedings of the European Conference on Silicon Carbide and Related Materials 2000.Google Scholar
17. Zinkle, S. J. and Kinsohita, C., J. Nucl. Mater. 251, 200 (1997).Google Scholar
18. Nordlund, K., Ghaly, M., Averback, R. S., Caturla, M., Rubia, T. Diaz de la, and Tarus, J., Phys. Rev. B 57(13), 7556 (1998).Google Scholar