Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T18:23:40.713Z Has data issue: false hasContentIssue false

Computational study of Mg insertion into amorphous silicon: advantageous energetics over crystalline silicon for Mg storage

Published online by Cambridge University Press:  06 September 2013

Fleur Legrain
Affiliation:
Department of Mechanical Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, 117576, Singapore
Oleksandr I. Malyi
Affiliation:
Department of Mechanical Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, 117576, Singapore
Teck L. Tan
Affiliation:
Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, 138632, Singapore
Sergei Manzhos*
Affiliation:
Department of Mechanical Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, 117576, Singapore
Get access

Abstract

We show in a theoretical density functional theory study that amorphous Si (a-Si) has more favorable energetics for Mg storage compared to crystalline Si (c-Si). Specifically, Mg and Li insertion is compared in a model a-Si simulation cell. Multiple sites for Mg insertion with a wide range of binding energies are identified. For many sites, Mg defect formation energies are negative, whereas they are positive in c-Si. Moreover, while clustering in c-Si destabilizes the insertion sites (by about 0.1/0.2 eV per atom for nearest-neighbor Li/Mg), it is found to stabilize some of the insertion sites for both Li (by up to 0.27 eV) and Mg (by up to 0.35 eV) in a-Si. This could have significant implications on the performance of Si anodes in Mg batteries.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Thackeray, M.M., Wolverton, C. and Isaacs, E.D. Energy Environ. Sci. 5, 7854 (2012).CrossRefGoogle Scholar
Shukla, A.K. and Kumar, T.P. J. Phys. Chem. Lett. 4, 551 (2013).CrossRefGoogle Scholar
Yoo, H.D., Shterenberg, I., Gofer, Y., Gershinsky, G., Pour, N. and Aurbach, D. Energy Environ. Sci. doi: 10.1039/c3ee40871j (2013).Google Scholar
Muldoon, J., Bucur, C.B., Oliver, A.G., Sugimoto, T., Matsui, M., Kim, H.S., Allred, G.D., Zajicek, J. and Kotani, Y. Energy Environ. Sci. 5, 5941 (2012).CrossRefGoogle Scholar
Singh, N., Arthur, T.S., Ling, C., Matsui, M. and Mizuno, F. Chem. Commun. 49, 149 (2013).CrossRefGoogle Scholar
Arthur, T.S., Singh, N. and Matsui, M. Electrochem. Commun. 16, 103 (2012).CrossRefGoogle Scholar
Malyi, O.I., Tan, T.L. and Manzhos, S. J. Power Sources 233, 341 (2013).CrossRefGoogle Scholar
Wu, H. and Cui, Y. Nano Today 7, 414 (2012).CrossRefGoogle Scholar
Malyi, O., Kulish, V.V., Tan, T.L. and Manzhos, S. Nano Energy doi: 10.1016/j.nanoen.2013.04.007 (2013).Google Scholar
Malyi, O.I., Tan, T.L. and Manzhos, S. Appl. Phys. Express 6, 027301 (2013).CrossRefGoogle Scholar
Tan, T.L., Malyi, O.I., Legrain, F. and Manzhos, S. Materials Research Society Symposium - Proceedings doi: 10.1557/opl.2013.756 (2013).Google Scholar
Kulish, V.V., Malyi, O.I., Ng, M.-F., Wu, P. and Chen, Z. RSC Advances 3, 4231 (2013).CrossRefGoogle Scholar
Legrain, F., Malyi, O.I. and Manzhos, S., Solid State Ionics, submitted.Google Scholar
Wan, W.H., Zhang, Q.F., Cui, Y. and Wang, E.G. J. Phys.: Condens. Matter. 22, 415501 (2010).Google Scholar
Kim, H., Kweon, K.E., Chou, C.-Y., Ekerdt, J.G. and Hwang, G.S. J. Phys. Chem. C 114, 17942 (2010).CrossRefGoogle Scholar
Huang, S. and Zhu, T. J. Power Sources 196, 3664 (2011).CrossRefGoogle Scholar
Tritsaris, G.A., Zhao, K., Okeke, O.U. and Kaxiras, E. J. Phys. Chem. C 116, 22212 (2012).CrossRefGoogle Scholar
Chevrier, V.L. and Dahn, J.R. J. Electrochem. Soc. 156, A454 (2009).CrossRefGoogle Scholar
Zhao, K., Wang, W.L., Gregoire, J., Pharr, M., Suo, Z., Vlassak, J.J. and Kaxiras, E. Nano Lett. 11, 2962 (2011).CrossRefGoogle Scholar
Chou, C.-Y. and Hwang, G.S. Surf. Sci. 612, 16 (2013).CrossRefGoogle Scholar
Cui, Z., Gao, F., Cui, Z. and Qu, J. J. Power Sources 207, 150 (2012).CrossRefGoogle Scholar
Kohn, W. and Sham, L.J. Physical Review 140, A1133 (1965).CrossRefGoogle Scholar
Soler, J.M., Artacho, E., Gale, J.D., Garcia, A., Junquera, J., Ordejon, P. and Sanchez-Portal, D. J. Phys.: Condens. Matter. 14, 2745 (2002).Google Scholar
Perdew, J.P., Burke, K. and Ernzerhof, M. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Monkhorst, H.J. and Pack, J.D. Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
Troullier, N. and Martins, J.L. Phys. Rev. B 43, 1993 (1991).CrossRefGoogle Scholar
Roy, R.J.L., Dattani, N.S., Coxon, J.A., Ross, A.J., Crozet, P. and Linton, C. J. Chem. Phys. 131, 204309 (2009).CrossRefGoogle Scholar
Tiesinga, E., Kotochigova, S. and Julienne, P.S. Physical Review A 65 (2002).CrossRefGoogle Scholar
Aydinol, M.K., Kohan, A.F., Ceder, G., Cho, K. and Joannopoulos, J. Phys. Rev. B 56, 1354 (1997).CrossRefGoogle Scholar
Tarascon, J.M. and Armand, M. Nature 414, 359 (2001).CrossRefGoogle Scholar
Salanne, M., Marrocchelli, D. and Watson, G.W. J. Phys. Chem. C 116, 18618 (2012).CrossRefGoogle Scholar
O'Callaghan, M.P. and Cussen, E.J. Chem. Commun. 2048 (2007).CrossRefGoogle Scholar