Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-07T06:28:12.017Z Has data issue: false hasContentIssue false

Comparison of two Metal Ion Implantation Techniques for Fabrication of Gold and Titanium Based Compliant Electrodes on Polydimethylsiloxane

Published online by Cambridge University Press:  31 January 2011

Muhamed Niklaus
Affiliation:
muhamed.niklaus@epfl.ch, EPFL, IMT, LMTS, Neuenburg, Switzerland
Samuel Rosset
Affiliation:
samuel.rosset@optotune.com, EPFL, IMT, LMTS, Neuenburg, Switzerland
Philippe Dubois
Affiliation:
philippe.dubois@epfl.ch, EPFL, IMT, LMTS, Neuenburg, Switzerland
Herbert R. Shea
Affiliation:
herbert.shea@epfl.ch, EPFL, IMT, LMTS, Neuenburg, Switzerland
Get access

Abstract

This study contrasts the implantation of 25 μm thick Polydimethylsiloxane (PDMS) membranes with titanium and gold ions at 10 keV and 35 keV for doses from 1×1015 at/cm2 to 2.5×1016 at/cm2 implanted with two different techniques: Filtered Cathodic Vacuum Arc (FCVA) and Low Energy Broad Ion Beam (LEI). The influence of the ion energy, ion type, and implantation tool on the Young’s modulus (E), resistivity and structural properties (nanocluster size and location, surface roughness) of PDMS membranes is reported. At a dose of 2.5×1016 at/cm2 and an energy of 10 keV, which for FCVA yields sheet resistance of less than 200 Ω/square, the initial value of E (0.85 MPa) increases much less for FCVA than for LEI. For gold we obtain E of 5 MPa (FCAV) compared to 86 MPa (LEI) and for titanium 0.94 MPa (FCVA) compared to 57 MPa (LEI). Resistivity measurements show better durability for LEI than for FCVA implanted samples and better time stability for gold than for titanium.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rosset, S., Niklaus, M., Dubois, P., Herbert Shea, R., Proceedings of SPIE 7287 (2009).Google Scholar
2 Niklaus, M., Rosset, S., Dubois, P., Shea, Herbert R., Scripta Materialia 59, 893896 (2008).10.1016/j.scriptamat.2008.06.038Google Scholar
3 Ziegler, J. F., The Stopping & range of ions in matter (2008). URL www.srim.org.Google Scholar
4 Dong, H., Bell, T., Surface and Coatings Technology 111, 2940 (1999).10.1016/S0257-8972(98)00698-7Google Scholar
5 Yuguang, W., Tonghe, Z., Andong, L., Gu, Z., Surface and Coat. Techn. 157, 262266 (2002).10.1016/S0257-8972(02)00162-7Google Scholar
6 Yuguang, W., Tonghe, Z., Andong, L., Xu, Z., Gu, Z., Vacuum 69, 461466 (2003).10.1016/S0042-207X(02)00377-9Google Scholar
7 Yuguang, W., Tonghe, Z., Gu, Z., Huixing, Z., Xiaoji, Z., Surf.&Coat.Tech. 148, 221225 (2001).10.1016/S0257-8972(01)01359-7Google Scholar
8 Chu, P. K., Chen, J. Y., Wang, L. P., Huang, N., Materials Science & Engeneering, Reports 36, 143206, (2002).10.1016/S0927-796X(02)00004-9Google Scholar