Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-2p87r Total loading time: 0.181 Render date: 2021-10-21T10:04:09.609Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Comparative Study on Lateral Silicide Growth in Self-Aligned Ti and Co Silicidation: Interaction and Reactivity with SiO2 and Si3N4

Published online by Cambridge University Press:  10 February 2011

Ji-Soo Park
Affiliation:
R&D Division, LG Semicon Co. Ltd., I Hyangjeong-dong, Cheong-si 361–480, Korea
Dong Kyun Sohn
Affiliation:
R&D Division, LG Semicon Co. Ltd., I Hyangjeong-dong, Cheong-si 361–480, Korea
Jong-Uk Bae
Affiliation:
R&D Division, LG Semicon Co. Ltd., I Hyangjeong-dong, Cheong-si 361–480, Korea
Yun-Jun Huh
Affiliation:
R&D Division, LG Semicon Co. Ltd., I Hyangjeong-dong, Cheong-si 361–480, Korea
Jin Won Park
Affiliation:
R&D Division, LG Semicon Co. Ltd., I Hyangjeong-dong, Cheong-si 361–480, Korea
Get access

Abstract

The interaction and reactivity of Ti and Co with SiO2 and Si3N4 have been investigated. In the case of Ti salicide, SiO2 sidewall spacer showed no lateral silicide overgrowth and low leakage current between gate and source/drain up to silicidation temperature of 750 1C. However, Si3N4 sidewall spacer showed dopant dependence of the lateral silicide growth and leakage current. This discrepancy between SiO2 and Si3N4 and dopant dependence is closely related to the reactivity. For Co, lateral silicide overgrowth is greatly reduced. Instead, Co films on SiO2 and Si3N4 layer were agglomerated by annealing. An annealing at 1050°C caused not only agglomeration of Co film but penetration of Co agglomerates through the layers. Interestingly, the CoSi2 spike of B type epitaxial and twinned orientation was formed in the Si substrate by the penetrated Co source.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ting, C. Y., yer, S. S. I, Osburn, C. M., Hu, G. J., and Schweighart, A. M., VLSI Science and Technology, Electrochemical Society, Pennington, NJ, 1982, pp. 213.Google Scholar
[2] Lau, C. K., See, Y. C., Scott, D. B., Bridges, J. M., Perna, S. M., and Savis, R. D., Tech. Dig. Int. Electron Devices Meet. 1982, p. 714.Google Scholar
[3] Wang, Q. F., Lauwers, A., Jonckx, F., Potter, de, Chen, Chun-Cho, and Maex, K., Mat. Res. Soc. Symp. Proc. 402, p.221 (1996).10.1557/PROC-402-221CrossRefGoogle Scholar
[4] Murarka, S. P., and Fraser, D. B., J. Appl. Phys. 21, p. 342 (1980).10.1063/1.327378CrossRefGoogle Scholar
[5] Boom, R., De Boer, R. F., and Miedema, A. R., J. Less-Common Met. 45, p. 237 (1976).10.1016/0022-5088(76)90270-8CrossRefGoogle Scholar
[6] Boom, R., De Boer, R. F., and Miedema, A. R., J. Less-Common Met. 46, p. 271 (1976).10.1016/0022-5088(76)90215-0CrossRefGoogle Scholar
[7] Beyers, R., Coulman, D., and Merchant, P., J. Appl. Phys. 61, p.5110 (1987).10.1063/1.338337CrossRefGoogle Scholar
[8] Maex, K., Ghosh, G., Delaey, L., Probst, V., Lippens, P., Van den hove, L., and De Keermaecker, R. F., J. Mater. Res. 4, p. 1209 (1989).10.1557/JMR.1989.1209CrossRefGoogle Scholar
[9] Maex, K., DeKeersmaecker, R. F., Ghosh, G., Delaey, L., and Probst, V., J. Appl. Phys. 66, p.5327 (1989).10.1063/1.343724CrossRefGoogle Scholar
[10] Park, H. K., Sachitano, J., McPherson, M., Yamaguchi, T., and Lehman, G., J. Vac. Sci. Technol. A2, p.264 (1984).10.1116/1.572576CrossRefGoogle Scholar
[11] Kitano, T., Kodama, N., Sakai, T., and Saito, S., Jpn. J. Appl. Phys. 35, p.591 (1996).10.1143/JJAP.35.591CrossRefGoogle Scholar
[12] Weast, R. C., Handbook of Chemistry and Physics, CRC Press, 1985.Google Scholar
[13] Smith, G. C., and Bonifield, T. D., Proc. IEEE VLSI Multilevel Interconnect Conf. 1987, p.155.Google Scholar
[14] Ting, W., Petti, C., Radigan, S., Ramkumar, K., and Trammel, P., IEEE Trans. Electron Device Lett EDL–15, p.283 (1994).10.1109/55.296217CrossRefGoogle Scholar
[15] Barin, I., Thermodynamic Data of Pure Substances, VCH, Weinheim, Germany, 1989.Google Scholar
[16] Jones, R. E., Li, B. Z., Daneshuar, K., and Davis, J., J. Appl. Phys. 56, p. 3465 (1984).10.1063/1.333896CrossRefGoogle Scholar
[17] Maeda, T., Nakamura, T., Shima, S., and Matsunga, J. IEEE Trans. Electron Devices, ED–34, p.599 (1987).10.1109/T-ED.1987.22969CrossRefGoogle Scholar
[18] Tamura, M., and Sunami, H., Jpn. J. Appl. Phys. 11, p. 1097 (1971).10.1143/JJAP.11.1097CrossRefGoogle Scholar
[19] Wolf, S., Silicon Processing for the VLSI era, Lattice Press, CA, 1990, vol. 2, p. 22.Google Scholar
[20]. Bogh, A., and Gaind, A. K., Appl. Phys. Lett. 33, p. 895 (1978).Google Scholar
[21] Jaccodine, R. J., and Schlegel, W. A., J. Appl. Phys. 37, p.2429 (1966).10.1063/1.1708831CrossRefGoogle Scholar
[22] Gambino, J. P., and Cunningham, B., J. Electrochem. Soc. 140, p. 2654 (1993).10.1149/1.2220880CrossRefGoogle Scholar
[23] Tung, R. T., Poate, J. M., Bean, J. C., Gibson, J. M., and Jacobson, D. C., Thin Solid Films 93, p.77 (1982).10.1016/0040-6090(82)90093-1CrossRefGoogle Scholar
[24] Tung, R. T., Batstone, J. L., and Yalisove, S. M., J. Electrochem. Soc. 136, p. 815 (1989).10.1149/1.2096749CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Comparative Study on Lateral Silicide Growth in Self-Aligned Ti and Co Silicidation: Interaction and Reactivity with SiO2 and Si3N4
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Comparative Study on Lateral Silicide Growth in Self-Aligned Ti and Co Silicidation: Interaction and Reactivity with SiO2 and Si3N4
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Comparative Study on Lateral Silicide Growth in Self-Aligned Ti and Co Silicidation: Interaction and Reactivity with SiO2 and Si3N4
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *