Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T01:31:13.879Z Has data issue: false hasContentIssue false

Comparative Study of Interface Structure in GaAs/AlAs Superlattices By Tem and Raman Scattering

Published online by Cambridge University Press:  26 February 2011

T. Nakamura
Affiliation:
Fujitsu Ltd., 10–1, Morinosato, Wakamiya, Atsugi, JAPAN 243–01
M. Ikeda
Affiliation:
Fujitsu Ltd., 10–1, Morinosato, Wakamiya, Atsugi, JAPAN 243–01
S. Muto
Affiliation:
Fujitsu Ltd., 10–1, Morinosato, Wakamiya, Atsugi, JAPAN 243–01
S. Komiya
Affiliation:
Fujitsu Ltd., 10–1, Morinosato, Wakamiya, Atsugi, JAPAN 243–01
I. Umebu
Affiliation:
Fujitsu Ltd., 10–1, Morinosato, Wakamiya, Atsugi, JAPAN 243–01
Get access

Abstract

Transition layers in GaAs/AlAs superlattices were studied by high resolution transmission electron microscopy (HRTEM) observations and Raman scattering measurements. We clarified that arrays of bright spots at the interface in the TEM image is a good indicator of the interfacial configuration and that a high atomic step density with intervals of less than 10 nm is necessary for Raman characterization using confined LO phonons.

We characterized the growth temperature dependence of the transition layers at the GaAs/AlAs interfaces. For a sample grown at 500'C, the extent of the transition layers is about one monolayer and that of the interfacial step intervals is more than 10 nm. For a sample grown at 700 0 C, these values are about two monolayers and less than 3 nm, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yokoyama, N., Imamura, K., Muto, S., Hiyamizu, S., and Nishi, H., Jpn. J. Appl. Phys. 24, L853(1985).Google Scholar
2.Yao, Y., Jpn. J. Appl. Phys. 22, L680(1983).Google Scholar
3.Jusserand, B., Alexandre, F., Paquet, D., and Roux, G. L., Appl. Phys. Lett. 47, 301(1985).Google Scholar
4.Tanaka, M., Sakaki, H., and Yoshino, J., Jpn. J. Appl. Phys. 24, L41(1985).Google Scholar
5.Petroff, P. M., Gossard, A. C., Savage, A., and Wiegmann, W., J. Cryst. Growth, 44, 5(1978).Google Scholar
6.Kuan, T. S. in Electron Microscopy of Materials, edited by Krakow, W., Smith, D., and Hobbs, L. W. (Mater. Res. Soc. Proc. 31, Pittsburgh, PA, 1984) pp. 143152.Google Scholar
7.Suzuki, Y. and Okamoto, H., J. Appl. Phys. 58, 3456(1985).Google Scholar
8.Ourmazd, A., Tsang, W. T., Rentschler, J. A., and Taylor, D. W., Appl. Phys. lett. 50, 1417(1987).Google Scholar
9.Ichinose, H., Furuta, T., Sakaki, H., and Ishida, Y., Proc. XIth Int. Cong. on Electron Microscopy, Kyoto (The Japanese society of Electron Microscopy, Tokyo, 1986) pp. 1483–1486.Google Scholar
10.de Jong, A. F., Bender, H., and Coene, W., Ultramicroscopy 21, 373(1987).Google Scholar
11.Sood, A. K., Menendez, J., Cardona, M., and Ploog, K., Phys. Rev. Lett. 54, 2111(1987).Google Scholar
12.Yanaka, T., Proc. XIth Int. Cong. on Electron Microscopy, Kyoto (The Japanese society of Electron Microscopy, Tokyo, 1986) pp. 243.Google Scholar
13.Cowley, J. H. and Moodie, A. F.: Acta. Cryst. 10, 609(1957).Google Scholar
14.Nakamura, T., Ikeda, M., Muto, S., and Umebu, I., unpublished data.Google Scholar