Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-18T12:13:19.293Z Has data issue: false hasContentIssue false

Co/HfO2 core shell nanocrystal memory

Published online by Cambridge University Press:  01 February 2011

Huimei Zhou
Affiliation:
hzhou@ee.ucr.edu, UCR, Department of Electrical Engineering, Riverside, California, United States
James Anthony Dorman
Affiliation:
jadorman@ucla.edu
Ya-Chuan Perng
Affiliation:
sandyperng@ucla.edu, UCLA, Department of Chemical Engineering, Los Angeles, California, United States
Stephanie Gachot
Affiliation:
sgachot@ucla.edu, UCLA, Department of Chemical Engineering, Los Angeles, California, United States
Jian Huang
Affiliation:
jian.huang002@email.ucr.edu, UCR, Department of Electrical Engineering, Riverside, California, United States
Yuanbing Mao
Affiliation:
yuanbing@seas.ucla.edu, UCLA, Department of Chemical Engineering, Los Angeles, California, United States
Jane Chang
Affiliation:
jpchang@seas.ucla.edu, UCLA, Department of Chemical Engineering, Los Angeles, California, United States
Jianlin Liu
Affiliation:
jianlin@ee.ucr.edu
Get access

Abstract

Metal/high-k dielectric core shell nanocrystal memory capacitor was demonstrated. This kind of MOS memory shows good performance in charge storage capacity, programming and erasing speed. By using a self-assembled Block Co-Polymer, Co/HfO2 core shell nanocrystals were well arrayed and showed uniform dot size and inter distance between dots. Compared with traditional metal nanocrystal fabrication process with E-Beam Evaporation followed by RTA (Rapid Thermal Annealing), core shell nanocrystal memory prepared by Block Co-Polymer produces a wide memory window of 8.4V at the ±12 V voltage sweep. Co/HfO2 core shell nanocrystals prepared by low-temperature Block Co-polymer process ensure high reliability of the devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tiwari, S. Rana, F. Hanafi, H. Hartstein, A. Crabbe, E.F. and Chan, K. Appl. Phys. Lett., 68 p. 1377, (1996).Google Scholar
2 King, Y.C. King, T.J. and Hu, C. IEEE Trans. Electron Devices, 48 p. 696, (2001).Google Scholar
3 Shi, Y. Saito, K. Ishikuro, H. and Hiramoto, T. J. Appl. Phys., 84 p. 2358, (1998).Google Scholar
4 Wu, L.C. Dai, M. Huang, X.F. Li, W. and Chen, K.J. J. Vac. Sci. Technol., B 22, p. 678, (2004).10.1116/1.1676527Google Scholar
5 Yeh, P.H. Chen, L.J. Liu, P.T. Wang, D.Y. and Chang, T.C. Electrochimica Acta, 52 pp. 2920–2926, (2007)Google Scholar
6 Choi, S. Kim, S. S. Chang, M. Hwang, H. S. and etc., Appl. Phys. Lett., 86, 123110 (2005).Google Scholar
7 Lin, Yu-Hsien, Chien, Chao-Hsin, Lin, Ching-Tzung, Chang, Chun-Yen, and Lei, Tan-Fu, IEEE Electron Device Letters, 26, pp. 154156 (2005)Google Scholar
8 Chen, J. H. Yoo, W. J. Chan, D. S. H. and Tang, L. J. Appl. Phys. Lett., 86, 073114 (2005).Google Scholar
9 Kim, Eunkyeom, Kim, Kyongmin, Son, Daeho, Kim, Jeongho, Lee, Kyungsu, Won, Sunghwan, Sok, Junghyun, Hong, Wan-Shick, and Park, Kyoungwan, Journal of Semiconductor Technology and Science, 8, pp. 2731, (2008)Google Scholar
10 Ohba, R. Sugiyama, N. Uchida, K. and etc., IEEE Trans. Electron Devices, 49, 1392 (2002).Google Scholar
11 Takata, M. Kondoh, S. Sakaguchi, T. Choi, H. Shim, J. C. Kurino, H. and Koyanagi, M. Tech. Dig. - Int. Electron Devices Meet., 553, (2003).Google Scholar
12 Lee, C. Gorur-Seetharam, A., and Kan, E. C. Tech. Dig. - Int. Electron Devices Meet., 557, (2003).Google Scholar
13 Zhou, Huimei, Gann, Reuben, Li, Bei, Liu, Jianlin and Yarmoff, J. A. Mater. Res. Soc. Symp. Proc., Vol. 1160 1160–H01 (2009)10.1557/PROC-1160-H01-05Google Scholar
14 Liu, Z. Lee, C. Narayanan, V. Pei, G. and Kan, E. C. IEEE Trans. Electron Devices, 49, 1606, (2002).Google Scholar
15 Kim, JooHyung, Yang, JungYup, Lee, JunSeok, and Hong, JinPyo, Appl. Phys. Lett., 92, 013512, (2008)Google Scholar
16 Lee, Jong Jin, Harada, Yoshinao, Pyun, Jung Woo and Kwong, Dim-Lee, Appl. Phys. Lett., 86, 103505, (2005)Google Scholar
17 Robertson, J., Sharia, O. and Demkov, A. A. Appl. Phys. Lett., 91, 132912 (2007)10.1063/1.2790479Google Scholar
18 Niwa, M. IEDM-SC, (2000)Google Scholar
19 Zhu, Yan, Li, Bei, and Liu, Jianlin, J. Appl. Phys., 101, 063702 (2007)Google Scholar
20 Perng, Y-C. Dorman, J. A. Gachot, S. Mao, Y. and Chang, J. P. in preparation.Google Scholar