Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-18T10:40:24.176Z Has data issue: false hasContentIssue false

The Chemistry of Oxygen in Silicon

Published online by Cambridge University Press:  21 February 2011

J. C. Mikkelsen Jr*
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
Get access

Abstract

Some of the key issues involving the chemistry of oxygen in silicon crystals are presented in this paper. The incorporation of oxygen into Czochralski-grown ingots from melt contact with silica crucibles is described in the context of the Si-SiO2 phase diagram. The techniques for characterizing oxygen in silicon are reviewed, with an emphasis on the use of secondary ion mass spectrometry (SIMS) and 18O isotope substitution. The intrinsic diffusivity and solubility of oxygen in silicon derived from these SIMS measurements are compared to similar results from other techniques as well as related extrinsic behavior of oxygen. Aggregation phenomena involving oxygen, including thermal donor formation and precipitation are discussed. Finally, the recent progress in understanding internal gettering and shear stress are summarized.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1). Patel, J. R., in Semiconductor Silicon 1981, ed. by Huff, H. R., Kriegler, R. J., and Takeishi, Y. (Electrochemical Society, Pennington, 1981), p. 189.Google Scholar
(2). Hoshikawa, K., Hirata, H., Nakanishi, H., and Ikuta, K., in Semiconductor Silicon 1981, ed. by Huff, H. R., Kriegler, R. J., and Takeishi, Y. (Electrochemical Society, Pennington, 1981), p. 101.Google Scholar
(3). Carlberg, T., King, T. B., and Witt, A. F., J. Electrochem. Soc. 129, 189 (1982).10.1149/1.2123753Google Scholar
(4). Kubaschewski, O. and Alcock, C. B., Metallurgical Thermochemistry, (Pergamon, Oxford) 1979, p. 226.Google Scholar
(5). Yatsurugi, Y., Akiyama, N., Endo, Y., and Nozaki, T., J. Electrochem. Soc. 120, 975 (1973).10.1149/1.2403610Google Scholar
(6). Lin, W. and Hill, D. W., J. Appl. Phys. 54, 1082 (1983).10.1063/1.332115CrossRefGoogle Scholar
(7). Fan, J. C. C., Tsaur, B-Y., Chen, C. K., Dick, J. R., and Kazmerski, L. L., Appl. Phys. Lett. 44, 1086 (1984).10.1063/1.94653Google Scholar
(8). Rava, P., Gatos, H. C., and Lagowski, J., J. Electrochem. Soc. 129, 2844 (1982).Google Scholar
(9). Suzuki, T., Isawa, N., Okubo, Y., and Hoshi, K., in Semiconductor Silicon 1981, ed. by Huff, H. R., Kriegler, R. J., and Takeishi, Y. (Electrochemical Society, Pennington, 1981), p. 90.Google Scholar
(10). Fiegl, G., in Defects in Silicon, ed. by Bullis, W. M. and Kimerling, L. C. (Electrochemical Society, Pennington, 1983), p.527.Google Scholar
(11). Stavola, M., Appl. Phys. Lett. 44, 514 (1984).10.1063/1.94816Google Scholar
(12). Infrared Studies of Crystal Defects, Newman, R. C. (Taylor and Francis, London, 1973).Google Scholar
(13). Corbett, J. W., McDonald, R. S., and Watkins, G. D., J. Phys. Chem. Solids 25, 873 (1964).10.1016/0022-3697(64)90100-3Google Scholar
(14). Stavola, M., Patel, J. R., Kimerling, L. C., and Freeland, P. E., Appl. Phys. Lett. 42, 73 (1983).Google Scholar
(15). Abe, T., Gotoh, S., Ozawa, N., and Masui, T., Silicon Processing ASTM STP 804, ed. by Gupta, D. C. (American Society for Testing and Materials, 1983) pp. 469476.10.1520/STP36185SGoogle Scholar
(16). Gass, J., Muller, H. H., Stussi, H., and Schweitzer, S., J. Appl. Phys. 51, 2030 (1980).10.1063/1.327922Google Scholar
(17). Mikkelsen, J. C. Jr, Appl. Phys. Lett. 40, 336 (1982).10.1063/1.93089Google Scholar
(18). Mikkelsen, J. C. Jr, Appl. Phys. Lett. 41, 871 (1982).10.1063/1.93681Google Scholar
(19). Evans, C. A. and Associates, San Mateo, CA.Google Scholar
(20). Mikkelsen, J. C. Jr, 24th Electronic Material Conf., Ft. Collins, CO, 1982.Google Scholar
(21). Takano, Y. and Maki, M., in Semiconductor Silicon 1973, ed. by Huff, H. R. and Burgess, R. R. (Electrochemical Society, Pennington, 1973), p. 469.Google Scholar
(22). Kaiser, W., Frisch, H. L., and Reiss, H., Phys. Rev. 112, 1546 (1958).10.1103/PhysRev.112.1546Google Scholar
(23). Cazcarra, V. and Zunino, P., J. Appl. Phys. 51, 4206 (1980).10.1063/1.328278CrossRefGoogle Scholar
(24). Binns, M. L., Brown, W. P., Wilkes, J. G., Newman, R. C., Livingston, F. M., Messoloras, S., and Stewart, R. J., Appl. Phys. Lett. 42, 525 (1983).10.1063/1.93992Google Scholar
(25). Heck, D., Tressler, R. E., and Monkowski, J., J. Appl. Phys. 54, 5739 (1983).10.1063/1.331796CrossRefGoogle Scholar
(26). Oates, A. S., Binns, M. J., Newman, R. C., Tucker, J. H., Wilkes, J. G., and Wilkinson, A., J. Phys. C: Solid State 17, 5685 (1984).10.1088/0022-3719/17/32/006Google Scholar
(27). Newman, R. C., Oates, A. S., and Livingston, F. M., J. Phys. C: Solid State Phys. 16, L667 (1983).Google Scholar
(28). Ourmazd, A., Schroter, W., and Bourret, A., J. Appl. Phys. 56, 1670 (1984).10.1063/1.334156Google Scholar
(29). Hansen, W. L., Pearton, S. J., and Hailer, E. E., Appl. Phys. Lett. 44, 889 (1984).10.1063/1.94968Google Scholar
(30). Abe, T., unpublished results.Google Scholar
(31). Hrostowski, H. and Kaiser, R. H., J. Phys. Chem. Solids 9, 214 (1959).10.1016/0022-3697(59)90099-XGoogle Scholar
(32). Bean, A. R. and Newman, R. C., J. Phys. Chem. Solids 32, 1211 (1971).10.1016/S0022-3697(71)80179-8Google Scholar
(33). Swalin, R. A., Thermodynamics of Solids (John Wiley & Sons, New York, 1962).Google Scholar
(34). Kaiser, W. and Breslin, J., J. Appl. Phys. 29, 1292 (1958).10.1063/1.1723428Google Scholar
(35). Benton, J. L., Kimerling, L. C., and Stavola, M., Physica 116B, 271 (1983).Google Scholar
(36). Oder, R. and Wagner, P., Defects in Semiconductors II, ed. by Mahajan, S. and Corbett, J. W. (North-Holland, New York, 1983), p. 171 Google Scholar
(37). Bourret, A., Thibault-Desseaux, J., and Seidman, D. N., J. Appl. Phys. 55, 825 (1984).10.1063/1.333178Google Scholar
(38). Tan, T. Y. and Tice, W. K., Philos. Mag. 34, 615 (1976).10.1080/14786437608223798CrossRefGoogle Scholar
(39). Ponce, F. A., Yamashita, T., and Hahn, S., Appl. Phys. Lett. 43 1051 (1983).10.1063/1.94232Google Scholar
(40). Yasutake, K., Umeno, M., and Kawabe, H., Phys. Stat. Sol. 83, 207 (1984).10.1002/pssa.2210830122CrossRefGoogle Scholar
(41). Hu, S. M., J. Appl. Phys. 52, 3974 (1981).10.1063/1.329204Google Scholar
(42). Forbes, L. and Whitwer, F., these proceedings.Google Scholar
(43). Ishihara, I., Kaneko, H., Matsumoto, S., Harada, H., and Abe, T., these proceedings.Google Scholar
(44). For a recent review see Craven, R. A., these proceedings.Google Scholar
(45). Nauka, K., Lagowski, J., and Gatos, H. C., these proceedings.Google Scholar
(46). Pinizzotto, R. F., Schaake, H. F., Massey, R. G., and Heidt, D. W., these proceedings.Google Scholar
(47). Yonenoga, I., Sumino, K., and Hoshi, K., J. Appl. Phys. 56, 2346 (1984).10.1063/1.334272Google Scholar