Hostname: page-component-6d856f89d9-mhpxw Total loading time: 0 Render date: 2024-07-16T08:25:03.726Z Has data issue: false hasContentIssue false

Chemical Vapor Deposition of Tin for Ulsi Applications

Published online by Cambridge University Press:  15 February 2011

M. Eizenberg*
Affiliation:
Dpt. Materials Engineering and Solid State Institute, Technion - Israel Institute of Technology, Haifa 32000, Israel
Get access

Abstract

TiN has been recognized as an excellent barrier material for W as well as Al planarization gap filling of contacts and vias. The need for conformality over extreme topography necessitates the use of CVD rather than sputtering for the deposition of TiN. In this paper we will first review the various deposition techniques of CVD TiN. Then, we will present a recently developed approach: thermal decomposition of TDMAT followed by nitrogen-based rf plasma treatments for resistivity reduction. This approach utilizes the advantages of thermal decomposition: excellent step coverage, good barrier properties, and low particle content. The resistivity reduction of the post deposition plasma treatment is followed by excellent stability upon long term air exposure. Vias and salicide contacts utilizing this unique process exhibit resistance values equivalent to those obtained when sputtered TiN is used. Conformal films as thin as 200Å can be utilized as excellent barriers for deep sub-0.5μm devices with large aspect ratios, where sputtered TiN can not be used any more.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Proceedings of ‘95 MOCVD Workshop for Silicon Processing, Kyungiu, Korea, 1995.Google Scholar
(2) Joshi, R. V. and Brodsky, S., in: Proc. of the 9th International VLSI Multi-level Interconnection Conference, Santa Clara, CA 1992, p. 253.Google Scholar
(3) The National Technology Roadmap for Semiconductors, Semiconductor Industry Association, 1994.Google Scholar
(4) Hegde, R. I., Fiordalice, R. W., Travis, E. O., and Tobin, P. J., J. Vac. Sci. Technol., B 11, 1287 (1993).Google Scholar
(5) Akahori, T., Tanihara, A., and Tano, M., Jpn. J. Appl. Phys. 30, 3558 (1991).Google Scholar
(6) Fix, R. M., Gordon, R. G., and Hoffman, D. M., Chem. Mater. 2, 235 (1990); 3, 1138 (1991).Google Scholar
(7) Raaijmakers, I. J., Vrtis, R. N., Sandhu, G. S., Yang, J., Broadbent, E. K., Roberts, D. A., and Lagendijk, A., in Ref. 2, p. 260.Google Scholar
(8) Sandhu, G. S., Meikle, S. G., and Doan, T. T., Appl. Phys. Lett. 62, 240 (1993).Google Scholar
(9) Intemann, A., Koerner, H., Ruhl, G., Hieber, K., and Hartmann, E., in: Advanced Metallization for ULSI Applications 1994, edited by Blumenthal, R and Janssen, G (Materials Research Society, Pittsburgh, PA 1995), p. 209.Google Scholar
(10) Weber, A., Nikulski, R., and Klages, C. P., Appl. Phys. Lett. 63, 325 (1993).Google Scholar
(11) Eizenberg, M., Littau, K., Ghanayem, S., Mak, A., Maeda, Y., Chang, M., and Sinha, A. K., Appl. Phys. Lett. 65, 2416 (1994).Google Scholar
(12) Eizenberg, M., Littau, K., Ghanayem, S., Liao, M., Mosley, R., and Sinha, A. K., J. Vac Science Technol. A 13, 590 (1995).Google Scholar
(13) Littau, K., Mosely, R., Eizenberg, M., Tran, H., Sinha, A. K., Dixit, G., Jain, M. K., Chisholm, M. F., and Havemann, R. H., SPIE 2335, 189 (1994).Google Scholar
(14) Paranjpe, A. and IslamRaja, M., J. Vac. Sci. Technol. B13, 2105 (1995).Google Scholar
(15) Eizenberg, M., MRS Bulletin, Vol. XX, No. 11, p.31, 1995.Google Scholar
(16) Ueno, K., Ohto, K., and Tsunenari, K., in Ref. 9, p. 95.Google Scholar
(17) Danek, M., Liao, M., Tseng, J., Littau, K., Saigal, D., Zhang, H., Mosely, R., and Eizenberg, M., Appl. Phys. Lett., 68, 1015 (1996).Google Scholar