Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-20T08:58:50.510Z Has data issue: false hasContentIssue false

Characterization of Mn-Doped in 1−x GaxAsyP1−y Grown By Lpee

Published online by Cambridge University Press:  26 February 2011

Shanthi N. Iyer
Affiliation:
North Carolina A & T State University, Greensboro, NC 27411
Ali Abul-Fadl
Affiliation:
North Carolina A & T State University, Greensboro, NC 27411
Ward J. Collis
Affiliation:
North Carolina A & T State University, Greensboro, NC 27411
Mohammad N. Khorrami
Affiliation:
North Carolina A & T State University, Greensboro, NC 27411
Get access

Abstract

Mn-doped In1−x GaxAsyP1−y epilayers lattice matched to InP substrate have been grown by the liquid phase electroepitaxial (LPEE) technique. The variation of growth velocity of the epilayers with current density and the doping characteristics of Mn in the epilayer has been studied. The temperature dependence of the hole concentration and the mobility has been analysed to determine the donor and acceptor densities, thermal activation energy of the level associated with Mn and the dominant scattering mechanisms that limit the hole mobility. The photoluminescence spectra of the doped epilayers are examined at 10K as a function of the excitation level.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iyer, S., Stefanakos, E.K., Abul-Fadl, A. and Collis, W.J., J. Cryst. Growth 70, 162 (1985).Google Scholar
2.Jastrzebski, L., Imamura, Y. and Gatos, H.C., J. Electrochem. Soc. 125, 1140 (1978).Google Scholar
3.Daniele, J.J. and Lewis, A., J. Electron. Mater. 12, 1015 (1983).Google Scholar
4.Okamoto, A., Lagowski, J. and Gatos, H.C., J. Appl. Phys. 53, 1706 (1982).Google Scholar
5.Imamura, Y., Jastrzebski, L. and Gatos, H.C., J. Electrochem. Soc. 125, 1560 (1978).Google Scholar
6.Lagowski, J., Jastrzebski, L. and Gatos, H.C., J. Appl. Phys. 51, 364 (1980).Google Scholar
7.Imamura, Y., Jastrzebski, L. and Gatos, H.C., J. Electrochem. Soc. 123, 1381 (1979).Google Scholar
8.Fujita, S., Kuzuhara, M., Yagyu, M. and Sasaki, A., Solid State Electron. 25, 359 (1982).Google Scholar
9.Smith, A.W.. Shantharama, L.G., Eaves, L., Greene, P.D., Hayes, J.R. and Adams, A.R., J. Phys. D : Appl. Phys. 16, 679 (1983).Google Scholar
10.Takeda, Y., Kondo, M., Okano, N. and Sasaki, A., Solid State Electron. 29, 241 (1985).Google Scholar
11.Abul-Fadl, A., Stefanakos, E.K. and Collis, W.J., J. Electron. Mater. 11, 559 (1982).Google Scholar
12.Whitney, P.S. and Fonstad, C.G., J. Appl. Phys. 57, 4663 (1985).Google Scholar
13.Hayes, J.R., Adams, A.R. and Greene, P.D., in GaInAsP Alloy Semiconductors edited by Pearsall, T.P. (Wiley, New York, 1982), p. 189; J. Electron. Mater. 11, 155 (1982).Google Scholar
14.Rao, Mulpuri V., J. Appl. Phys. 58, 4313, (1985).Google Scholar
15.Pearsall, T.P., Beuchet, G., Hirtz, J.P., Visentin, M., Bonnet, M. and Roizes, A., Proc. of the Eighth International Symposium on Gallium Arsenide and Related Compounds, Vienna, 1980 (Inst. of Phys., Bristol) p.639.Google Scholar