Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T02:38:09.675Z Has data issue: false hasContentIssue false

Catalytic Properties of Nanocrystalline WO3−X, Pt/WO3−X and Pd/WO3−X Particles

Published online by Cambridge University Press:  15 February 2011

Chiun-Yen Tung
Affiliation:
Department of Materials Engineering, Tatung Institute of Technology, Taipei, Taiwan, R.O.C
Hong-Ming Lin
Affiliation:
Department of Materials Engineering, Tatung Institute of Technology, Taipei, Taiwan, R.O.C
Chi-Ming Hsu
Affiliation:
Department of Materials Engineering, Tatung Institute of Technology, Taipei, Taiwan, R.O.C
Chao-Cheng Yang
Affiliation:
Department of Humanities and Sciences, Chemistry Division, National Yunlin Institute of Technology, Yunlin County, Taiwan, R. O. C.
Get access

Abstract

The gas-condensation technique is used to produce the nanocrystalline WO3−C, Pt/WO3−X and Pd/WO3−X powders under different atmospheres and pressures. High resolution electron microscope shows there exists well bonded interface between Pt or Pd and WO3−X The WO3−X, Pt/WO3−X and Pd/WO3−x nanocrystals grow into needle shape with plate inside when these asevaporated powders are compacted and sintered at 900 °C for two hours. The plate grows preferentially in {220) plane along < 001 > direction. However, the mean particle size of nanophase Pt and Pd only increases from less than 10 nm to 30 nm and 50 nm, respectively. The gas chromatography results show that nanophase Pt/VO3−X powders have better catalytic effects in converting CO to CO2 than nanophase WO3−X and Pd/WO3−X powders.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Engle, T., Ertl, G., In: The Chemical Physics of Surfaces and Heterogeneous Catalysis, Woodruff, P. and King, D. A., eds., 4 (1982) 73.Google Scholar
2. Behm, R. J., Ertl, G., Christmann, K., Hove, M. A. Van, J. Chem. Phys., 73 (1980) 2984.Google Scholar
3. Baro, A. M., Poach, H., J. Chem. Phys., 71 (1979) 4812.Google Scholar
4. Gland, J. L., Surface Sci., 93 (1980) 487.Google Scholar
5. Campbell, C. T., Ertl, G., Kuipers, H., Segner, J. Surface Sci., 107 (1981) 220.Google Scholar
6. Gland, J. L., Sexton, B. A., Fischer, G. B., Surface Sci., 95 (1980) 587.Google Scholar
7. Engle, T., Ertl, G., J. Chem. Phys., 69 (1978) 1267.Google Scholar
8. Matsushima, T., J. Catalysis 55 (1978) 337. Surf. Sci., 79 (1979) 63.Google Scholar
9. Taylor, J. L., Ibbotson, D. E., Weinberg, W. H., J. Catalysis., 62 (1980) 1.Google Scholar
10. Ertl, G., Koch, J., Proc. Vth Int. Conger. on Catalysis, Palm Beach., (1972) 969.Google Scholar
11. Hopster, H., Toach, H., Comsa, G., J. Catalysis., 46 (1977) 37.Google Scholar
12. Ladas, S., Poppa, H., Boudart, M., Surface Sci., 102 (1981) 151.Google Scholar
13. Cant, N. W., Hicks, P. C., Lennon, B. S., J. Catalysis., 54 (1978) 372.Google Scholar
14. Humenik, M., and Kingery, W. D. F., Amer. Ceram. Soc., 37 (1954)18.Google Scholar
15. Kingery, W. D. F., Amer. Ceram. Soc., 37 (1954)42.Google Scholar
16. Pilliar, R. M. and Nutting, J. Phil. Mag., 16 (1967)181.Google Scholar
17. Weaver, C., Chem. and Indust., (1965) 370.Google Scholar
18. Bruin, H. J. de, Moodie, A. F., and Warble, C. E. F., Materials Sci., 7 (1972)909.Google Scholar
19. Baetzold, R. C., Surface Sci., 36 (1972)123.Google Scholar
20. Nicolau, C. S. and Thom, H. G., Z. Anorg., Allgem. Chem., 303 (1960)133.Google Scholar
21. Schwab, G.M., Surface Sci., 13 (1969)198.Google Scholar
22. Schwab, G. M. and Zettler, H., Chimia., 23 (1969)489.Google Scholar
23. Lin, Hong-Ming, Hsieh, Shu-Huei, Lee, Pee-Yew, Lai, Ming-Shung and Wu, Jie-Shing, Materials Chemistry and Physics, 34 (1993)205213.Google Scholar