Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T19:30:23.471Z Has data issue: false hasContentIssue false

Boron Diffusion in Fluorine Preamorphized Silicon During Rapid Thermal Annealing

Published online by Cambridge University Press:  21 February 2011

H. Kinoshita
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
T. H. Huang
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
D. L. Kwong
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
P. E. Bakeman JR.
Affiliation:
IBM General Technology Division, Essex Junction, VT 05452
Get access

Abstract

The effect of fluorine preamorphization on boron diffusion and activation during rapid thermal annealing (RTA) has been investigated. Compared with low energy B or BF2 implant into crystalline Si, F preamorphization suppressed the transient enhanced diffusion of B and increased dopant activation. Results show that the tail diffusion was absent, and thus the junction depth of the RTA annealed sample was established by the as-implanted B profile. Secondary ion mass spectroscopy and cross-sectional transmission electron micrograph results show F accumulation near the surface and at end-of-range defects. The interaction of F with defects is believed to reduce the B diffusion during RTA.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wilson, R. G., J. Appl. Phys., 54, 6879 (1983).Google Scholar
2. Miyake, M., J. Electrochem. Soc., 137, 2860 (1990).Google Scholar
3. Ozturk, M. C., Wortman, J. J., and Fair, R. B., Appl. Phys. Lett., 52, 963 (1986).CrossRefGoogle Scholar
4. Bousetta, A., Berg, J. A. van den, and Armour, D. G. Appl. Phys. Lett. 58, 1626 (1991).Google Scholar
5. Ruggles, G. A., Hong, S. N., Wortman, J. J., Ozturk, M., Myers, E. R., Hren, J. J., and Fair, R. B., Mat. Res. Soc. Symp. Proc., 128, 611 (1989).Google Scholar
6. Ozturk, M. C., Wortman, J. J., Ozburn, C. M., Ajmera, A., Rozgonyi, G. A., Frey, E., Chu, W. K., and Lee, C., IEEE Trans. Elect. Dev., ED- 35, 659 (1988).Google Scholar
7. Kim, U. S., Kook, T., and Jaccodine, R. J., J. Elect. Chem. Soc., 135, 270 (1988).Google Scholar
8. Ohyu, K., Itoga, T., and Natsuaki, N., Jap. J. Appl. Phys., 29, 457 (1990).Google Scholar
9. Ando, S., Horie, H., Imai, M., Oikawa, K., Kato, H., Ishiwari, H., and Hijiya, S., 1990 Symp. on VLSI Tech., 65 (1990).Google Scholar
10. Fan, D., Parks, J. M., and Jaccodine, R. J., Appl. Phys. Lett., 59, 1212 (1991).Google Scholar
11. Kato, J., J. Electrochem. Soc., 137, 1918 (1990).Google Scholar
12. Nishioka, Y., Silva, E. F. Da Jr., Wang, Y., and Ma, T. P., IEEE Elect. Dev. Lett., 9, 38 (1988).Google Scholar
13. Seidel, T. E., Knoell, R., Poli, G., Schwartz, B., Stevie, F. A., and Chu, P., J. Appl. Phys., 58, 683 (1985).Google Scholar
14. Tsai, M. Y., Streetman, B. G., Williams, P., and Evans, C. A. Jr., Appl. Phys. Lett., 32, 144 (1978).Google Scholar
15. Queirolo, G., Bresolin, C., Robba, D., Anderle, M., Canteri, R., Armigliato, A., Ottaviani, G., and Frabboni, S., J. Elect. Mat., 20, 373 (1991).CrossRefGoogle Scholar
16. Kinoshita, T., Takakura, M., Miyazaki, S., Yokoyama, S., Koyanagi, M. and Hirose, M., 22nd Conf. on Solid State Dev. and Mat., 421 (1990).Google Scholar
17. Ho, C. P., Plummer, J. D. and Dutton, R. W., IEEE Trans. on Elect. Dev., ED- 30, 1438 (1983).Google Scholar