Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-12T01:23:54.987Z Has data issue: false hasContentIssue false

Application of hopping theory for the prediction of charge mobility in amorphous organic materials

Published online by Cambridge University Press:  21 February 2012

Karl Sohlberg
Affiliation:
Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104-2875
Choongkeun Lee
Affiliation:
Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104-2875
Robert Waterland
Affiliation:
E. I. du Pont de Nemours & Co., Inc., C.R. & D., Wilmington, Delaware 19880-0320
Get access

Abstract

The application of hopping theory for the prediction of charge (hole) mobility in amorphous organic molecular materials is studied in detail. Application is made to amorphous cells of N,N’-diphenyl-N,N’-bis-(3-methylphenylene)-1,1’-diphenyl-4,4’-diamine (TPD), N4,N4’-di(biphenyl-3-yl)-N4,N4’-diphenylbiphenyl-4,4’-diamine (mBPD), 1,1-bis-(4,4’-diethylaminophenyl)-4,4-diphenyl-1,3,butadinene (DEPB), N1,N4-di(naphthalen-1-yl)-N1,N4-diphenylbenzene-1,4-diamine (NNP), and N,N’-bis[9,9-dimethyl-2-fluorenyl]-N,N’-diphenyl-9,9-dimethylfluorene-2,7-diamine (pFFA). Detailed analysis of the computation of each of the parameters in the equations for hopping rate is presented, including studies of their convergence with respect to various numerical approximations. Based on these convergence studies, the most robust practical methodology is applied to investigate the dependence of mobility on such parameters as the monomer reorganization energy, the monomer-monomer coupling and the material density. The results give insight into what factors should be controlled to develop materials with higher (or lower) charge (hole) mobility, and what will be required to improve the accuracy of predictions of mobility in amorphous organic materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Murphy, A. R., Fréchet, J. M. J., J. Chem. Rev. 107, 1066 (2007).Google Scholar
2. Wang, L., Nan, F., Yang, X., Peng, Q., Li, Q., Shuai, Z., Chem. Soc. Rev. 39, 423 (2010).Google Scholar
3. Kumar, A., Liao, H.-H., Yang, Y., Org. Electron, 10, 1615 (2009).Google Scholar
4. Micolich, A. P., Bell, L. L., Hamilton, A. R., J. Appl. Phys. 102, 084511 (2007).Google Scholar
5. Tant, J., Geerts, Y. H., Lehmann, M., Cupere, V. D., Zucchi, G., Laursen, B. W., Bjømholm, T., Lemaur, V., Marcq, V., Burquel, A., Hennebicq, E., Gardebien, F., Viville, P., Beljonne, D., Lazzaroni, R., Cornil, J., J. Phys. Chem. B 109, 20315 (2005).Google Scholar
6. Laschat, S., Baro, A., Steinke, N., Giesselmann, F., Hägele, C., Scalia, G., Judele, R., Kapatsina, E., Sauer, S., Schreivogel, A., Tosoni, M., Angew. Chem. Int. Ed. 46, 4832 (2007).Google Scholar
7. Deng, W.-Q., Goddard, W. A., J. Phys. Chem. B 108, 2004 (2004).Google Scholar
8. Rossi, M., Sohlberg, K., J. Phys. Chem. C 113, 6821 (2009).Google Scholar
9. Rossi, M., Sohlberg, K., J. Phys. Chem. C 114. 12173 (2010).Google Scholar
10. Wu, Q., Voorhis, T. V., J. Phys. Chem. A 110, 9212 (2006).Google Scholar
11. Nelsen, S. F., Blackstock, S. C., Kim, Y., J. Am. Chem. Soc. 109, 677 (1987).Google Scholar
12. Troisi, A., Orlandi, G., Chem. Phys. Lett. 344, 509 (2001).Google Scholar
13. Kieninger, M., Suhai, S., J. Comput. Chem. Phys. 104, 2410 (1996).Google Scholar
14. Valeev, E. F., Coropceanu, V., da Silva. Filho, D. A., Salman, S., Brédas, J. –L., J. Am. Chem. Soc. 128, 9882 (2006).Google Scholar
15. Williams, D. E., J. Comput. Chem. 22, 1154 (2001).Google Scholar
16. Nagata, Y., Lennartz, C., J. Chem. Phys, 129, 034709 (2008).Google Scholar
17. Foster, M. E., Sohlberg, K., J. Chem. Theory Comput. 6, 2153 (2010).Google Scholar
18. Grimme, S., J. Comput. Chem. 27, 1787 (2006)Google Scholar
19. Lee, C., Waterland, R., Sohlberg, K., J. Chem. Theory Comput. 7, 2556 (2011)Google Scholar
20. Gruhn, N. E., da Silva Filho, D. A., Bill, T. G., Malagoli, M., Coropceanu, V., Kahn, A., Brédas, J. –L., J. Am. Chem. Soc. 124, 7918 (2002).Google Scholar
21. Kwon, O., Coropceanu, V., Gruhn, N. E., Durivage, J. C., Laquindanum, J. G., Katz, H. E., Cornil, J., Brédas, J. –L., J. Chem. Phys. 120, 8186 (2004).Google Scholar
22. da Silva Filho, D. A., Kim, E. –G., Brédas, J. –L., Adv. Mater. 17, 1072 (2005).Google Scholar