Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-w78fb Total loading time: 0.307 Render date: 2021-04-16T20:58:34.220Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Application of Bogoliubov-de Gennes equations to vortices in Hubbard superconductors

Published online by Cambridge University Press:  16 February 2015

Chumin Wang
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, D.F., México
César G. Galván
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, D.F., México
Luis A. Pérez
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, D.F., México
Get access

Abstract

In this work, the formation of d-wave superconducting magnetic vortex is studied within the Bogoliubov-de Gennes formalism and the generalized Hubbard model, which leads to 2N 2 coupled self-consistent equations for a supercell of N×N atoms. These equations determine the spatial variation of the superconducting gap as a function of the electron concentration and electron-electron interactions. The results show that the superconducting states induced by the correlated hopping (Δt 3) are more sensitive to the presence of magnetic field than those induced by attractive nearest-neighbor interaction (V). Furthermore, we calculate the electronic specific heat as a function of the temperature for a given applied magnetic field, whose behavior has a qualitative agreement with experimental data.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below.

References

Abrikosov, A.A, Rev. Mod. Phys. 76, 975979 (2004).CrossRef
de Gennes, P. G., Superconductivity of metals and alloys (Addison-Wesley Pub. Co., New York, 1989).Google Scholar
Pérez, L. A., Millán, J. S., and Wang, C., Int. J. Mod. Phys. B 24, 5229 (2010).CrossRef
Dagotto, E., Riera, J., Chen, Y. C., Moreo, A., Nazarenko, A., Alcaraz, F., and Ortolani, F., Phys. Rev. B 49, 3548 (1994).CrossRef
Galván, C.G., Pérez, L.A., and Wang, C., Phys. Lett. A 376, 1380 (2012).CrossRef
Han, Q., Wang, Z.D., Zhang, L.-Y. and Li, X.-G., Phys. Rev. B 65, 064527 (2002).CrossRef
Wang, Y. and MacDonald, A.H., Phys. Rev. B 52, R3876R3879 (1995).CrossRefPubMed
Tinkham, M., Introduction to Superconductivity, 2nd Edition (McGraw Hill, New York, 1996) pp. 64.Google Scholar
Wen, H.-H., et al. Phys. Rev. B 72, 134507 (2005).CrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 13 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 16th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Application of Bogoliubov-de Gennes equations to vortices in Hubbard superconductors
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Application of Bogoliubov-de Gennes equations to vortices in Hubbard superconductors
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Application of Bogoliubov-de Gennes equations to vortices in Hubbard superconductors
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *