Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-18T12:15:28.002Z Has data issue: false hasContentIssue false

Analysis of Structural Transformations in High Fluence Nitrogen Ion Implanted Aluminium

Published online by Cambridge University Press:  21 February 2011

L. Calvo
Affiliation:
LCMM, Dept. Física Aplicada i ElectrÒnica, Universitat de Barcelona, Avda. Diagonal, 645-647, E-08028-Barcelona, Spain
A. Perez-Rodriguez
Affiliation:
LCMM, Dept. Física Aplicada i ElectrÒnica, Universitat de Barcelona, Avda. Diagonal, 645-647, E-08028-Barcelona, Spain
A. Romano-Rodriguez
Affiliation:
LCMM, Dept. Física Aplicada i ElectrÒnica, Universitat de Barcelona, Avda. Diagonal, 645-647, E-08028-Barcelona, Spain
J.J. Moranteand
Affiliation:
LCMM, Dept. Física Aplicada i ElectrÒnica, Universitat de Barcelona, Avda. Diagonal, 645-647, E-08028-Barcelona, Spain
J. Montserrat
Affiliation:
Centro Nacional de MicroelectrÒnica CNM-CSIC, Campus UAB, E-08193 Bellaterra, Spain
Get access

Abstract

The structural analysis of Al layers on Si obtained by sputtering at different conditions and implanted with nitrogen (with doses of 2.5×10'17 and 5×1017 N2+ ions/cm2, energy 150 keV, room temperature) is performed by SRP, SIMS and TEM measurements. The correlation between these measurements shows the formation of AIN crystalline precipitates already at the substoichiometric dose. SRP and TEM reveal the presence of a buried layer with resistivity higher than the Al matrix, with a high concentration of AIN precipitates. The morphology of this layer is affected by surface roughness. For the higher dose, a buried continuous AIN polycrystalline dielectric layer is formed. Moreover, the SIMS measurements suggest a gettering effect of Si in the buried layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hemment, P.L.F., Mater. Res. Soc. Symp. Proc. 53, 207 (1986).CrossRefGoogle Scholar
2. Lucas, S. and Chevalier, J., Surf. Coat. Technol. 51, 441 (1992).Google Scholar
3. Lin, C., Hemment, P.L.F., Li, J., and Chan, C.W.M., Mater. Lett. 15, 137 (1992).Google Scholar
4. Kimura, K., Onitsuka, Y., Nakanishi, K., and Mannami, M., Jpn. J. Appl. Phys. 23, 1145 (1984).Google Scholar
5. Matthews, A.P., Iwaki, M., Horino, Y., Satou, M., and Yabe, K., Nucl. Inst. Meth. Phys. Res. B59/60, 671 (1991).Google Scholar
6. Hemdon, T.O., J. Electrochem. Soc. 138, 3107 (1991).Google Scholar
7. Lieske, N. and Hezel, R., J. Appl. Phys. 52, 5806 (1981).CrossRefGoogle Scholar
8. McCune, R.C., Donlon, W.T., Plummer, H.K. Jr., toth, L., and Kunz, F.W., Thin Solid Films 168, 263 (1989).Google Scholar
9. Lucas, S., Terwagne, G., Piette, M., and Bodart, F., Nucl. Instr. Meth. Phys. Res. B59/60, 925 (1991).Google Scholar