Hostname: page-component-6d856f89d9-76ns8 Total loading time: 0 Render date: 2024-07-16T04:07:33.865Z Has data issue: false hasContentIssue false

Amorphous Diamond Films Deposited by Pulsed-Laser Ablation: the Optimum Carbon-Ion Kinetic Energy and Effects of Laser Wavelength

Published online by Cambridge University Press:  15 February 2011

Douglas H. Lowndes
Affiliation:
Solid State DivisionOak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6056 Life Sciences DivisionOak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6056
Vladimir I. Merkulov
Affiliation:
Solid State DivisionOak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6056
A. A. Puretzky
Affiliation:
Solid State DivisionOak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6056
D. B. Geohegan
Affiliation:
Solid State DivisionOak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6056
G. E. Jellison Jr.
Affiliation:
Solid State DivisionOak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6056
C. M. Rouleau
Affiliation:
Solid State DivisionOak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6056
T. Thundat
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6056vdh@ornl.gov
Get access

Abstract

A systematic study has been made of changes in the bonding and optical properties of hydrogen-free tetrahedral amorphous carbon (ta-C) films, as a function of the kinetic energy of the incident carbon ions measured under film-deposition conditions. Ion probe measurements of the carbon ion kinetic energies produced by ArF and KrF laser ablation of graphite are compared under identical beam-focusing conditions. Much higher C+ kinetic energies are produced by ArF-laser ablation than by KrF for any given fluence and spot size. Electron energy loss spectroscopy and scanning ellipsometry measurements of the sp3 bonding fraction, plasmon energy, and optical properties reveal a well-defined optimum kinetic energy of 90 eV to deposit ta-C films having the largest sp3 fraction and the widest optical (Tauc) energy gap (equivalent to minimum near-gap optical absorption). Tapping-mode atomic force microscope measurements show that films deposited at near-optimum kinetic energy are extremely smooth, with rms roughness of only ~ 1 Å over distances of several hundred nm, and are relatively free of particulates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Robertson, J., Prog. Solid State Chem. 21, 199 (1991).Google Scholar
2. Robertson, J., Surf. Coat. Technol. 50, 185 (1992).Google Scholar
3. McKenzie, D. R. et al. , J. Non-Crystalline Solids 164–166, 1101 (1993).Google Scholar
4. For a more complete summary of previous ta-C film deposition see refs. 8, 9, 11, 12, 35.Google Scholar
5. McKenzie, D. R., Muller, D., and Pailthorpe, B. A., Phys. Rev. Lett. 67, 773 (1991).Google Scholar
6. Lossy, R. et al. , Appl. Phys. Lett. 61, 171 (1992).Google Scholar
7. Fallon, P. J. et al. , Phys. Rev. B 48, 4777 (1993).Google Scholar
8. Xu, S. et al. , J. Appl. Phys. 79, 7234 (1996).Google Scholar
9. Xu, S. et al. , Phil Mag. B 76, 351 (1997).Google Scholar
10. Milne, W. I. et al. , Mat. Res. Soc. Symp. Proc. 471, 231 (1997).Google Scholar
11. Silva, S. R. P. et al. , Thin Solid Films 290–291, 317 (1996).Google Scholar
12. Chhwolla, M. et al. , Phys. Rev. B 52, 15812 (1995).Google Scholar
14. Prawer, S. et al. , Diamond Relat. Mater. 5, 433 (1996).Google Scholar
15. Lifshitz, Y., Diamond Relat. Mater. 5, 388 (1996).Google Scholar
16. Marquardt, C. L., Williams, R. T., and Nagel, D. J., Mat. Res. Soc. Symp. Proc. 38, 325 (1985).Google Scholar
17. Pappas, D. L. et al. , J. Appl. Phys. 71, 5675 (1992).Google Scholar
18. Pappas, D. L. et al. , J. Appl. Phys. 72, 3966 (1992).Google Scholar
19. Xiong, F., Wang, Y. Y., Leppert, V., and Chang, R. P. H., I. Mater. Res. 8, 2265 (1993).Google Scholar
20. Xiong, F., Wang, Y. Y., and Chang, R. P. H., Phys. Rev. B 48, 8016 (1993).Google Scholar
21. Puretzky, A. A. et al. , Mat. Res. Soc. Symp. Proc. 388, 145 (1995).Google Scholar
22. Puretzky, A. A. et al. , Appl. Surf. Sci. 96–98, 859 (1996).Google Scholar
23. Geohegan, D. B. and Puretzky, A. A., Mat. Res. Soc. Symp. Proc. 397, 55 (1996).Google Scholar
24. Lowndes, D. H. et al. , Science 273, 898 (1996).Google Scholar
25. Yamamoto, K. et al. , Jpn. J. Appl. Phys. Lett. 36, L1333 (1997).Google Scholar
26. Sato, T. et al. , Jpn. J. Appl. Phys. Lett. 26, L1487 (1987).Google Scholar
27. Koster, H. and Mann, K., Appl. Surf. Sci. 109–110, 428 (1997).Google Scholar
28. Murray, P. T. and Thebert-Peeler, D., p. 359 in Second Inter. Conf. on Laser Ablation: Mechanisms and Applications II, Amer. Inst. of Physics, New York, 1993.Google Scholar
29. Sullivan, J. P., Friedmann, T. A., and Baca, A. G., J. Electron. Materials 26, 1021 (1997).Google Scholar
30. Friedmann, T. A. et al. , Appl. Phys. Lett. 71, 3820 (1997).Google Scholar
31. Siegal, M. P. et al. , Mat. Res. Soc. Symp. Proc. 349, 507 (1994).Google Scholar
32. Robertson, J., Diamond Relat. Mater. 2, 984 (1993).Google Scholar
33. Robertson, J., Phil. Trans. Royal Soc. London, Ser. A 342, 277 (1993).Google Scholar
34. Merkulov, V. I. et al. , submitted to Applied Physics Letters. Google Scholar
35. Lowndes, D. H. et al. , submitted to J. of Applied Physics. Google Scholar
36. Geohegan, D. B., p. 124127 and p. 147–8 in Pulsed Laser Deposition of Thin Films (ed. by Chrisey, D. B. and Hubler, G. K.), John Wiley & Sons, New York, 1994.Google Scholar
37. Berger, S. D. and McKenzie, D. R., Phil. Mag. Lett. 57, 285 (1988).Google Scholar
38. Jellison, G. E. Jr., and Modine, F. A., Appl. Opt. 36, 8184 (1997);Google Scholar
Jellison, G. E. Jr., and Modine, F. A., Appl. Opt. 36, 8190 (1997).Google Scholar
39. Jellison, G. E. Jr., Geohegan, D. B., Lowndes, D. H., Puretzky, A. A., and Merkulov, V., this symposium proceedings.Google Scholar
40. Jellison, G. E. Jr., and Modine, F. A., Appl. Phys. Lett. 69, 373–373 (1996);Google Scholar
Jellison, G. E. Jr., and Modine, F. A., Appl. Phys. Lett. 69, 2137 (1996).Google Scholar