Skip to main content Accessibility help
×
Home

Advanced Slurry Formulations for New Generation Chemical Mechanical Planarization (CMP) Applications

Published online by Cambridge University Press:  30 July 2012


Bahar Basim
Affiliation:
Ozyegin University, Faculty of Engineering, Mechanical Engineering Department, Alemdag, Istanbul, Turkey.
Ayse Karagoz
Affiliation:
Ozyegin University, Faculty of Engineering, Mechanical Engineering Department, Alemdag, Istanbul, Turkey. Yildiz Technical Universityy, Faculty of Chemistry & Metallurgy, Bioengineering Department, Davutpasa, Istanbul, Turkey.
Zeynep Ozdemir
Affiliation:
Ozyegin University, Faculty of Engineering, Mechanical Engineering Department, Alemdag, Istanbul, Turkey.

Abstract

Chemical Mechanical Planarization (CMP) is widely used to ensure planarity of metal and dielectric surfaces to enable photolithography and hence multilevel metallization in microelectronics manufacturing. The aim of this study is to establish a fundamental understanding on the dynamic growth of nano-scale protective oxide thin films during CMP to enable the selection of proper oxidizer concentrations for slurry formulations. Tungsten was selected as the model metal film to study the formation of these metal oxide films in various oxidizers and Atomic Force Microscope (AFM) was used to measure the surface roughness of the samples conditioned in the oxidizer environment before and after the CMP was conducted. The affect of surface roughness on wettability of the surfaces were also studied through contact angle measurements on the treated tungsten films. Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance FTIR/ATR technique in combination with the X-Ray Reflectivity (XRR) were utilized to determine the thicknesses of the oxidized nano films on the tungsten surface. The results were evaluated through the material removal responses reported in the literature for the W-CMP in addition to the comparison of the Pilling-Bedworth ratios of the oxidized nano films to determine the ability of the created oxide film as a self-protective oxide.


Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Krishnan, M., Nalaskowski, J.W., Cook, L.M., Chem. Rev., 110, p. 178204 (2010).CrossRefGoogle Scholar
2. McCaffery, E. Introduction to Corrosion Science ”, Springer, New York, p. 235 (2010).CrossRefGoogle Scholar
3. Kaufman, F.B., Thomson, D.B. Broadie, R.E., Jaso, M.A., Guthrie, W.L., Pearson, M.B., Small, M.B., Journal of the Electrochemical Society, 138,(1991) 3460.CrossRefGoogle Scholar
4. Robert, D., White, Andrew J., Mueller, Minchul S., Douglas, G., Vincent, P., and Chris, B.R., Journal of The Electrochemical Society, 158 (10) H1041H1051 (2011).Google Scholar
5. Lim, G., Lee, H-H., Son, J-W., Lee, H-W, Kim, J., Journal of the Electrochemical Society, 153 (5) B169B172 (2006).CrossRefGoogle Scholar
6. Xu, C., Gao, W., Mat Res Innovat, 3, p. 231235 (2000).CrossRefGoogle Scholar
7. Vijayalakshmi, R., Jayachadran, M., Sanjeeviraja, C., Current Applied Physics, 3, p. 171175 (2003).CrossRefGoogle Scholar
8. Bielman, M., Mahajan, U., Singh, R. K., Agarwal, P., Mischler, S., Rosset, E., Landolt, D., in Chemical Mechanical Polishing – Fundamentals and Challenges, Babu, S.V., Danyluk, S., Krishnan, M., Tsujimura, M., Editors, PV 566, p.97, Mater. Res. Soc. Proc., Pittsburgh, PA (2000).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 16 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 2nd December 2020. This data will be updated every 24 hours.

Hostname: page-component-79f79cbf67-b9sxz Total loading time: 0.354 Render date: 2020-12-02T06:09:41.367Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Wed Dec 02 2020 06:06:27 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Advanced Slurry Formulations for New Generation Chemical Mechanical Planarization (CMP) Applications
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Advanced Slurry Formulations for New Generation Chemical Mechanical Planarization (CMP) Applications
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Advanced Slurry Formulations for New Generation Chemical Mechanical Planarization (CMP) Applications
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *