Skip to main content Accessibility help
×
Home

Adhesion and Cu Diffusion Barrier Properties of a MnOx Barrier Layer Formed with Thermal MOCVD

Published online by Cambridge University Press:  31 January 2011

Koji Neishi
Affiliation:
neishi@material.tohoku.ac.jp, Tohoku University, Material Science and Engineering, Sendai, Miyagi, Japan
Vijay Kumar Dixit
Affiliation:
dixit@material.tohoku.ac.jpdixit@rrcat.gov.in, Tohoku University, Material Science and Engineering, Sendai, Miyagi, Japan
S. Aki
Affiliation:
s.aki@imr.tohoku.ac.jp, Tohoku University, Material Science and Engineering, Sendai, Miyagi, Japan
Junichi Koike
Affiliation:
koikej@material.tohoku.ac.jp, Tohoku University, Material Science and Engineering, Sendai, Japan
K. Matsumoto
Affiliation:
kenji.matsumoto@tel.com, Technology Development Center, Tokyo Electron Ltd., Nirasaki, Japan
H. Sato
Affiliation:
hiroshi.sato@tel.com, Technology Development Center, Tokyo Electron Ltd., Nirasaki, Japan
H. Itoh
Affiliation:
hitoshi.itoh@tel.com, Technology Development Center, Tokyo Electron Ltd., Nirasaki, Japan
S. Hosaka
Affiliation:
shigetoshi.hosaka@tel.com, Technology Development Center, Tokyo Electron Ltd., Nirasaki, Japan
Get access

Abstract

A thin-amorphous MnOx layer using self-forming barrier process with a Cu-Mn alloy shows good adhesion and diffusion barrier properties between copper and dielectric layer, resulting in excellent reliability for stress and electromigration. Meanwhile, chemical vapor deposition (CVD) can be employed for conformal deposition of the barrier layer in narrow trenches and vias for future technology node. In our previous research, a thin and uniform amorphous MnOx layer could be formed on TEOS-oxide by thermal metal-organic CVD (MOCVD), showing a good diffusion barrier property. In addition, a good adhesion strength is necessary between a Cu line and a dielectric layer not only to ensure good SM and EM resistance but also to prevent film delamination under mechanical or thermal stress conditions during fabrication process such as chemical mechanical polishing or high temperature annealing. To date, no information is available with regard to the adhesion property of CVD-MnOx. In this work, we report diffusion barrier property in further detail and adhesion property in PVD-Cu/CVD-MnOx/SiO2/Si. The temperature dependence of the adhesion property is correlated with the chemical composition and valence state of Mn investigated with SIMS and Raman spectroscopy.

Substrates were p-type Si wafers having a plasma-TEOS oxide of 100nm in thickness. CVD was carried out in a deposition chamber. A manganese precursor was vaporized and introduced into the deposition chamber with H2 carrier gas. After the CVD, a Cu overlayer was deposited on some samples using a sputtering system in load lock chamber of the CVD machine. The diffusion barrier property of the MnOx film was investigated in annealed samples at 400 oC for 100 hours in a vacuum of better than 1.0×10-5 Pa. The Adhesion property of Mn oxide was investigated by Scotch tape test in the as-deposited and in the annealed Cu/CVD-MnOx/TEOS samples. The obtained samples were analyzed for thickness and microstructure with TEM, chemical bonding states of the MnOx layer with XPS, and composition of each layer with SIMS.

In the CVD deposition below 300 °C, no Cu delamination was observed both in the as-deposited and in the annealed Cu/CVD-MnOx/SiO2 samples. On the other hand, in the CVD deposition at 400 °C, the Cu films were delaminated from the CVD-MnOx/TEOS substrates. The XPS peak position of Mn 2p and Mn 3s spectra indicated that the valence state of Mn in the as-deposited barrier layer below 400 °C was 2+. Composition analysis with SIMS as well as Raman also indicated the presence of a larger amount of carbon at 400 °C than at less than 300 °C. The good adhesion between Cu and MnO could be attributed to an amount of carbon inclusion in the CVD barrier layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below.

References

1International Technology Roadmap for Semiconductors, 2006.Google Scholar
2 Neishi, K., Aki, S. Matsumoto, K. Sato, H. Ito, H. Hosaka, S. and Koike, J. Appl. Phys. Lett., 93, 032106 (2008).CrossRefGoogle Scholar
3 Matumoto, K. Neishi, K. Ito, H. Sato, H. Hosaka, S. and Koike, J. Appl. Phys. Express, 2, 036503 (2009).CrossRefGoogle Scholar
4 Tuinstra, F. and Koenig, J. L. J. Composite mater., 4, 492 (1970).CrossRefGoogle Scholar
5 Jawhari, T. Roid, A. and Casado, J. Carbon, 33, 1561 (1995).CrossRefGoogle Scholar
6 Dixit, V. K. Neishi, K. Koike, J. Proceedings of the MRS spring, pp D4-11 (2009).Google Scholar
7 Ablett, J. M. Woicik, J. C. Tőkei, Zs., List, S. and Dimasi, E. Appl. Phys. Lett., 94, 042112 (2009).CrossRefGoogle Scholar
8 Wen-bin, S., Durose, K. Brinkman, A. W. and Tannor, B. K. Material Chemistry and Physics, 47, p.7577 (1997).CrossRefGoogle Scholar
9 Welipitiya, D. Green, A. Woods, J. P. and Dowben, P. A. J. Appl. Phys., 79, 8730 (1996).CrossRefGoogle Scholar
10 Pugmire, D. L. Woodbridge, C. M. and Langell, M. A. Sur. Sci., 411, L844 (1998).CrossRefGoogle Scholar
11 Pugmire, D. L. Woodbridge, C.M. Root, S. and Langell, M. A. J. Vac. Sci. Technol. A, 17, 1581 (1999).CrossRefGoogle Scholar
12 Pugmire, D. L. Woodbridge, C.M. Boag, N. M. and Langell, M. A. Sur. Sci., 472, 155 (2001).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 14 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 15th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-cctwg Total loading time: 0.24 Render date: 2021-01-15T19:11:13.136Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Fri Jan 15 2021 18:52:21 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Adhesion and Cu Diffusion Barrier Properties of a MnOx Barrier Layer Formed with Thermal MOCVD
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Adhesion and Cu Diffusion Barrier Properties of a MnOx Barrier Layer Formed with Thermal MOCVD
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Adhesion and Cu Diffusion Barrier Properties of a MnOx Barrier Layer Formed with Thermal MOCVD
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *