Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-01T22:17:08.545Z Has data issue: false hasContentIssue false

About Some Peculiarities in Defect Appearence in Elemental and III–V Compound Semiconducting Materials

Published online by Cambridge University Press:  25 February 2011

Maria G. Kalitzova
Affiliation:
Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Lenin Boulvd, Sofia 1784, Bulgaria
N. K. Pashov
Affiliation:
Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Lenin Boulvd, Sofia 1784, Bulgaria
G. Vitali
Affiliation:
Energetics Department, University of Rome “La Sapienza”, via Scarpa 14, 00161 Roma, Italy
M. Rossi
Affiliation:
Energetics Department, University of Rome “La Sapienza”, via Scarpa 14, 00161 Roma, Italy
Get access

Abstract

High Resolution Transmission Electron Microscopy (HRTEM) has been used to obtain direct Information on the structure of damage clusters and in-depth radiation damage distribution in ion-implanted Ge and GaAs with Te+ and Si+ respectively, at doses far below the amorphization threshold. The observed changes in damage contrast in Te+ implanted Ge emphasize the existence of well defined separation between vacancies and interstitials in the lattice damage clusters. For GaAs an integrated “grey zone” was found as a typical effect of Si+ implantation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Parsons, J.R., Rainville, M. and Hoelke, C.W., Phil. Mag. 21,1105 (1970).10.1080/14786437008238497CrossRefGoogle Scholar
2. Werner, P. and Pasemann, M., Ultramicroscopy 7, 267 (1982).Google Scholar
3. Gessner, T., Pasemann, M. and Schmidt, B., Phys. Stat. Sol. a 77, 133 (1983).10.1002/pssa.2210770116Google Scholar
4. Ruault, M.O., Chaumont, J., Penisson, J.M. and Bourret, A., Phil. Mag. 50, 667 (1985).10.1080/01418618408237526Google Scholar
5. Kalitzova, M.G., Karpuzov, D.S. and Pashov, N.K., Phil. Mag. A51, 373 (1985).10.1080/01418618508237561Google Scholar
6. Narayan, J., Oen, O.S., Fathy, D. and Holland, O.W., Mater. Lett. 3, 67 (1985).Google Scholar
7. Sadana, D.K., Nucl. Instr. Meth. B7/8, 375 (1985).Google Scholar
8. Vitali, G., Rossi, M., Kalitzova, M., Pashov, N., Werner, P. and Bartsch, H., Il Nuovo Cimento D 10, 271 (1988).Google Scholar
9. Vitali, G., Kalitzova, M., Pashov, N., Werner, P., Bartsch, H. and Karpuzov, D., Appl. Phys. A46, 185 (1988).10.1007/BF00939262Google Scholar
10. Kalitzova, M.G., Karpuzov, D.S. and Pashov, N.K., in Solid State Phenomena vol.1&2, edited by Stievenard, D. and Bourgoin, J.C. (TTP Ltd., Switzerland, 1988), p. 465.Google Scholar
11. Sheng, T.T. and Markus, R.B., J. Electrochem. Soc. 127, (1980).10.1149/1.2129742Google Scholar
12. Jager, W., J. Microsc. Spectrosc. Electron. 6, 437 (1981).Google Scholar
13. Ruault, M.O., Chaumont, J. and Bernas, H., Nucl. Instr. Meth. 209/210, 351 (1983).Google Scholar
14. Howe, L.M. and Rainville, M.H., Nucl. Instr. Meth. B19/20, 61 (1987).10.1016/S0168-583X(87)80015-0Google Scholar
15. Jager, W. and Merkle, K.L., Phil. Nag. A57, 479 (1988).Google Scholar
16. Petroff, P.M., Gossard, A.C., Wiegmann, W. and Savage, A., J. Cryst. Growth 44, 5 (1978).10.1016/0022-0248(78)90321-4Google Scholar
17. Hirayama, Y., Suzuki, Y. and Okamoto, H., Jpn. J. Appl. Phys. 24, 1498 (1985).10.1143/JJAP.24.1498Google Scholar
18. Newman, R.C. and Woodhead, J., J. Phys. C 17, 1405 (1984).Google Scholar