Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T07:09:41.075Z Has data issue: false hasContentIssue false

Ab-Initio Molecular Dynamics Approach to the Study of Grain Boundaries in Semiconductors

Published online by Cambridge University Press:  28 February 2011

E. Tarnow
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
P. D. Bristowe
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
J. D. Joannopoulos
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
M. C. Payne
Affiliation:
Cavendish Laboratory, Madingley Road, Cambridge, CB3 OHE, England
Get access

Abstract

Using an ab-initio molecular dynamics approach based on the Car-Parrinello method, the detailed atomic and electronic structure of a high-angle grain boundary in germanium is determined by investigating its energy-translation surface. Information concerning the coordination of the lowest energy configuration, its translation state, volume change, structure factor and local density of states is obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See papers in “Structure and Properties of Grain Boundaries”, ed. by Hagege, S. and Nouet, G., J. de Physique 43, Colloque C-6 (1982).Google Scholar
2. See papers in “Structure and Properties of Internal Interfaces”, ed. by Ruhle, M., Balluffi, R. W., H. Fischmeister and S. L. Sass, J. de Physique 46, C4 (1985).Google Scholar
3. See papers in “Grain Boundary Structure and Related Phenomena”, ed. by Ishida, Y., Supple. to Trans.Japan Inst. of Metals 27 (1986).Google Scholar
4. See papers in “Grain Boundaries in Semiconductors”, ed. by Leamy, H. J., Pike, G. E. and Seager, C. H.. MRS Symposium Proceedings, Vol. 5 (1982).Google Scholar
5. Grovenor, C.R.M., J. Phys. C 18, 4079 (1985).Google Scholar
6. Maurice, J-L., Revue Phys. Appl. 22, 613 (1987).Google Scholar
7. Taylor, W. E., Odell, N. H., Fan, H. Y., Phys. Rev. 88, 867 (1952).Google Scholar
S. Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 247 (1985).Google Scholar
9. Payne, M. C., Joannopoulos, J. D., Allen, D. C., Teter, M. P. and Vanderbilt, D. H., Phys. Rev. Lett. 56, 2656 (1986).Google Scholar
10. Starkloff, Th. and Joannopoulos, J. D., Phys. Rev. B16, 5212 (1977).Google Scholar
11. Allan, D. C. and Teter, M. P., Phys. Rev. Lett. 59, 1136 (1987).Google Scholar
12. Payne, M. C., Bristowe, P. D. and Joannopoulos, J. D., Phys. Rev. Lett. 58, 1348 (1987).Google Scholar
13. Tarnow, E., Bristowe, P. D., Joannopoulos, J. D. and Payne, M. C., J. Phys. C. to be published.Google Scholar
14. Hohl, D., Jones, R. O., Car, R. and Parrinello, M., Chem. Phys. Lett. 139, 540 (1987).Google Scholar
15. Payne, M. C., J. Phys. C: Solid State Phys. 20, L983 (1987).Google Scholar
16. Needels, M., Payne, M. C. and Joannopoulos, J. D., Phys. Rev. Lett. 58, 1765 (1987).Google Scholar
17. Needels, M., Payne, M. C., and Joannopoulos, J. D., Phys. Rev. B, 38, 5543 (1988).Google Scholar
18. Car, R. and Parrinello, M., Proc. 18th ICPS, Stockholm, ed. by Engstrom, O. (World Scientific) Vol. 2, 1165 (1986).Google Scholar
19. Pond, R. C., Inst. Phys. Conf. Ser. No. 67, p. 59 (1983).Google Scholar
20. Bacmann, J. J., Silvestre, G., Petit, M. and Bollmann, W., Phil. Nag. A43, 189 (1981).Google Scholar
21. Pond, R. C. and Vlachavas, D. S., Proc. Roy. Soc. (Lond.) A386, 95 (1983).Google Scholar
22. Vitek, V., Crystal Lattice Defects, 5, 1 (1974).Google Scholar
23. Bollmamnn, W., “Crystal Defects and Crystalline Interfaces”, Springer-Verlag, Berlin, 1970.Google Scholar
24. Taylor, M. S., Majid, I., Bristowe, P. D. and Balluffi, R. W., Phys. Rev. B, to be published.Google Scholar
25. Payne, M. C., Bristowe, P. D. and Joannopoulos, J. D., MRS Proc., Vol. 77 (1987). p. 205.CrossRefGoogle Scholar