Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T05:42:18.292Z Has data issue: false hasContentIssue false

Ab Initio Theory of the Ground State Properties of Ordered and Disordered Alloys and the Theory of Ordering Processes in Alloys

Published online by Cambridge University Press:  28 February 2011

G. Malcolm Stocks
Affiliation:
Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, TN 37831
D.M. Nicholson
Affiliation:
Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, TN 37831
F.J. Pinski
Affiliation:
Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, TN 37831
W.H. Butler
Affiliation:
Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, TN 37831
P. Sterne
Affiliation:
Science and Engineering Research Council, Daresbury Laboratory, Daresbury, Warrington, United Kingdom
W.M. Temmerman
Affiliation:
Science and Engineering Research Council, Daresbury Laboratory, Daresbury, Warrington, United Kingdom
B.L. Gyorffy
Affiliation:
H. H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
D.D. Johnson
Affiliation:
H. H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
A. Gonis
Affiliation:
Department of Physics, Northwestern University, Evanston, IL 60201
X.-G. Zhang
Affiliation:
Department of Physics, Northwestern University, Evanston, IL 60201
P.E.A. Turchi
Affiliation:
University of California, Berkeley, CA, and Lawrence Livermore National Laboratory, Livermore, CA 94550
Get access

Abstract

We review some of the advances in the calculation of the electronic structure and energetics of ordered and disordered alloys that hold out the possibility of obtaining, in thenot-too-distant future, an ab initio theory of ordering and phase stability in alloys. In particular, we focus on the calculation of the ground state properties of Ni3Al and discuss the competition between the Li2 and D022 ordered structures. We review the ab initio concentration functional theory of ordering developed by Gyorffy and Stocks and its application to the short-range-ordered solid-solution state in CucPd1-c alloys. Finally, we review the generalized perturbation method approach to calculation of multisite interchange potentials in Ni3Al, Pd3V, and Al3Ti and again discuss L12/D022 competition as well as antiphase boundary energies in Ni3Al.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).Google Scholar
2. Kohn, W. and Sham, L.J., Phys. Rev. 140, A1133 (1965).Google Scholar
3. For a succinct presentation of the LSDA and of the results of its application to metals see Calculated Electronic Properties of Metals, by Moruzzi, V.L., Janak, J.F., and Williams, A.R. (Pergamon Press, New York, 1978).Google Scholar
4. Stocks, G.M. and Winter, H., in The Electronic Structure of Complex Systems, edited by Phariseau, P. and Temmerman, W.M., NATO ASI Series B, Vol. 113 (Plenum Press, New York, 1984) p. 463.CrossRefGoogle Scholar
5. Johnson, D.D., Nicholson, D.M., Pinski, F.J., Gyorffy, B.L., and Stocks, G.M., Phys. Rev. Lett. 56, 2088 (1986).CrossRefGoogle Scholar
6. Gyorffy, B.L., Phys. Rev. B 5, 2382 (1972).CrossRefGoogle Scholar
7. Stocks, G.M., Temmerman, W.M., and Gyorffy, B.L., Phys. Rev. Lett. 41, 339 (1978).CrossRefGoogle Scholar
8. Carlsson, A.E., presented at the 1986 MRS Fall Meeting, Boston, MA, 1986 (unpublished).Google Scholar
9. Chen, S.-P., Voter, A.F., and Srolovitz, D.J., presented at the 1986 MRS Fall Meeting, Boston, MA, 1986 (unpublished).Google Scholar
10. Foiles, S.M., presented at the 1986 MRS Fall Meeting, Boston, MA, 1986 (unpublished).Google Scholar
11. Averill, F.W., Phys. Rev. B 6, 3637 (1972).CrossRefGoogle Scholar
12. Williams, A.R., Kübler, J., and Gelatt, C.D. Jr., Phys. Rev. B 19, 6094 (1979).CrossRefGoogle Scholar
13. Wimmer, E., Krakauer, H., Weinert, M., and Freeman, A.J., Phys. Rev. B 24, 864, (1981).Google Scholar
14. Faulkner, J.S., Phys. Rev. B 26, 1597 (1982); D.M. Nicholson and J.S. Faulkner (unpublished).CrossRefGoogle Scholar
15. Skriver, H.L., “The LMTO Method,” Solid State Sciences, Vol. 41 (Springer-Verlag, New York, 1984).Google Scholar
16. Barth, U. von and Hedin, L., J. Phys. C 5, 1029 (1972).Google Scholar
17. Faulkner, J.S., Prog. Mater. Sci. 27, 1 (1982).Google Scholar
18. Stocks, G.M. and Winter, H., Phys. Rev. B 27, 882 (1983).Google Scholar
19. Vegard, L., Z. Phys. 5, 17 (1921); Z. Kristallogr. Kristallgeom., Kristallphys., Kristallchem 67, 239 (1928).CrossRefGoogle Scholar
20. Pearson, W. B., A Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon, New York, 1958).Google Scholar
21. Gyorffy, B.L. and Stocks, G.M., Phys. Rev. Lett. 50, 374 (1983).CrossRefGoogle Scholar
22. Khachaturyan, A.G., Theory of Structural Transformations in Solids (John Wiley and Sons, New York, 1983).Google Scholar
23. Ohshima, K. and Watanabe, D., Acta Crystallogr. A 33, 520 (1977).CrossRefGoogle Scholar
24. Moss, S.C., Phys. Rev. Lett. 22, 1108 (1969).Google Scholar
25. Kikuchi, R., Phys. Rev. 81, 988 (1951).Google Scholar
26.Monte Carlo Methods in Statistical Physics,” in Topics in Current Physics, Vol. 7, 2nd edition, edited by Binder, K. (Springer-Verlag, New York, 1986).Google Scholar
27. Ducastelle, F. and Gautier, F., J. Phys. F 6, 2039 (1976).Google Scholar
28. Turchi, P., Ducastelle, F., and Treglia, G., J. Phys. C 15, 2891 (1982); P. Turchi, These de Doctarat d'Etat es Sciences, Univ.-Pierre et Marie Curie, Paris VI (1984).CrossRefGoogle Scholar
29. Gonis, A., Turchi, P.E., Butler, W.H., and Stocks, G.M. (unpublished).Google Scholar
30. Dorin, J., Veyssiere, P., and Beaucamp, P., Philos. Mag. 54, 375 (1986).Google Scholar
31. Chen, S.-P., Voter, A.F., and Srolovitz, D.J., Sci. Metallogr. 20, 1389 (1986).CrossRefGoogle Scholar
32. Foiles, S.M. and Daw, M.S., J. Mater. Res. (in press).Google Scholar