Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T10:59:41.957Z Has data issue: false hasContentIssue false

Ab initio investigation of the structural and magnetic properties of Ni-Pt-Mn-Ga alloys

Published online by Cambridge University Press:  17 July 2013

Mikhail A. Zagrebin
Affiliation:
Chelyabinsk State University, 129 Brat’ev Kashirinykh Str., Chelyabinsk,454001, Russia National Research South Ural State University, 78 Lenina prospect, Chelyabinsk, 454080, Russia
Vladimir V. Sokolovskiy
Affiliation:
Chelyabinsk State University, 129 Brat’ev Kashirinykh Str., Chelyabinsk,454001, Russia National University of Science and Technology “MISiS”, 4 Leninsky prospect, Moscow, 119049, Russia
Vasiliy D. Buchelnikov
Affiliation:
Chelyabinsk State University, 129 Brat’ev Kashirinykh Str., Chelyabinsk,454001, Russia
Peter Entel
Affiliation:
University of Duisburg-Essen, 1 Lotharstr., Duisburg Campus, Duisburg, D-47048, Germany.
Sergey V. Taskaev
Affiliation:
Chelyabinsk State University, 129 Brat’ev Kashirinykh Str., Chelyabinsk,454001, Russia
Get access

Abstract

Structural and magnetic properties of Ni2-xPtxMnGa alloys are investigated from first principles calculations with the help of the spin-polarized relativistic Korringa-Kohn-Rostoker and Plane-Wave Self-Consistent Field methods. The atomic chemical disorder at specific site has been implemented using coherent potential approximation. Calculated equilibrium lattice parameters are in a good agreement with experimental data and other theoretical calculations. The composition dependences of the magnetic exchange couplings and the Curie temperature for cubic phase are obtained. Our calculations have shown that an increase content of Pt results to decrease of magnetic interactions between Mn atoms and to change of interaction sign from ferromagnetic type to antiferromagnetic one for composition Ni1.0Pt1.0MnGa. Calculated Curie temperatures are in an agreement with experimental data.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Buchelnikov, V.D., Vasiliev, A.N., Koledov, V.V. et al. ., Physics-Uspekhi 49, 871877 (2006).CrossRefGoogle Scholar
Entel, P., Gruner, M.E., Dannenberg, A. et al. ., Materials Science Forum 635, 3-12 (2010) 312.CrossRefGoogle Scholar
Siewert, M., Gruner, M.E., Dannenberg, A. et al. ., Appl. Phys. Lett. 99, 191904 (2011).CrossRefGoogle Scholar
Siewert, M., Gruner, M.E., Hucht, A. et al. ., Advanced Engineering Materials 14, 530546 (2012).CrossRefGoogle Scholar
Giannozzi, P., Baroni, S., Bonini, N. et al. ., J. Phys.: Condens. Matter. 21, 395502 (2009).Google Scholar
Ebert, H., Ködderitzsch, D. and Minár, J., Reports on Progress in Physics 74, 096501 (2011).CrossRefGoogle Scholar
Ebert, H., SPR-KKR package Version 5.4 on http://ebert.cup.unimuenchen.de.Google Scholar
Vosko, S.H., Wilk, L., Nusair, M., Can. J. Phys. 58, 1200 (1980).CrossRefGoogle Scholar
Liechtenstein, A.I., Katsnelson, M.I., Antropov, V.P., Gubanov, V. A., J. of Magnetism and Magn. Mater. 67, 65 (1987)CrossRefGoogle Scholar
Webster, P.J.. Ziebeck, K.R.A., Town, S.L. et al. ., Philosophical Mag: B. 49, 295810 (1984).CrossRefGoogle Scholar
Kishi, Y., Yajima, Z., Shimizu, K., Wuttig, M., Materials Science and Engineering A 378, 361364 (2004).CrossRefGoogle Scholar
Şaşıoğlu, E., Sandratskii, L.M., and Bruno, P., Phys. Rev. B 72, (2005) 184415.CrossRefGoogle Scholar
Sokolovskiy, V.V., Buchelnikov, V.D., Zagrebin, M.A., Entel, P., Sahool, S. and Ogura, M., Phys. Rev. B 86, 134418 (2012).CrossRefGoogle Scholar
Singh, S., Ziebeck, K.R.A., Suard, E. et al. ., Appl. Phys. Lett. 101, 171904 (2012).CrossRefGoogle Scholar