Skip to main content Accessibility help
×
Home

Water-dispersible near-infrared luminescent silicon nanocrystals –immobilization on substrate

  • Takashi Kanno (a1), Shinya Kano (a1), Hiroshi Sugimoto (a1), Yasuhiro Tada (a1) and Minoru Fujii (a1)...

Abstract

We demonstrate formation of allylamine (AAm) and acrylic acid (AAc)-functionalized colloidal silicon nanocrystals (Si NCs) exhibiting near-infrared (NIR) luminescence and immobilization of the NCs on substrates via covalent bond. The surface functionalization is confirmed by IR absorption spectroscopy and specific binding property of functionalized NCs. Atomic force microscope observations reveal that AAm- and AAc-functionalized Si NCs are chemically immobilized on self-assembled monolayers via covalent bonds. The functionalized Si NCs exhibit photoluminescence in a NIR region (1.5–1.6 eV), which is not significantly affected by the functionalization.

Copyright

Corresponding author

Address all correspondence to S. Kano at kano@eedept.kobe-u.ac.jp and M. Fujii at fujii@eedept.kobe-u.ac.jp

References

Hide All
1. Alivisatos, P.: The use of nanocrystals in biological detection. Nat. Biotechnol. 22, 47 (2004).
2. Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., and Weiss, S.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538 (2005).
3. Tsoi, K.M., Dai, Q., Alman, B.A., and Chan, W.C.W.: Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc. Chem. Res. 46, 662 (2012).
4. Bhattacharjee, S., Rietjens, I.M.C.M., Singh, M.P., Atkins, T.M., Purkait, T.K., Xu, Z., Regli, S., Shukaliak, A., Clark, R.J., Mitchell, B.S., Alink, G.M., Marcelis, A.T.M., Fink, M.J., Veinot, J.G.C., Kauzlarich, S.M., and Zuilhof, H.: Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges. Nanoscale 5, 4870 (2013).
5. Rosso-Vasic, M., Spruijt, E., Popovic, Z., Overgaag, K., van Lagen, B., Grandidier, B., Vanmaekelbergh, D., Dominguez-Gutierrez, D., De Cola, L., and Zuilhof, H.: Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging. J. Mater. Chem. 19, 5926 (2009).
6. Warner, J.H., Hoshino, A., Yamamoto, K., and Tilley, R.D.: Water-soluble photoluminescent silicon quantum dots. Angew. Chem. Int. Ed. 44, 4550 (2005).
7. He, Y., Su, Y., Yang, X., Kang, Z., Xu, T., Zhang, R., Fan, C., and Lee, S.-T.: Photo and pH stable, highly-luminescent silicon nanospheres and their bioconjugates for immunofluorescent cell imaging. J. Am. Chem. Soc. 131, 4434 (2009).
8. Yu, Y., Hessel, C.M., Bogart, T.D., Panthani, M.G., Rasch, M.R., and Korgel, B.A.: Room temperature hydrosilylation of silicon nanocrystals with bifunctional terminal alkenes. Langmuir 29, 1533 (2013).
9. Xu, Z., Li, Y., Zhang, B., Purkait, T., Alb, A., Mitchell, B.S., Grayson, S.M., and Fink, M.J.: Water-soluble PEGylated silicon nanoparticles and their assembly into swellable nanoparticle aggregates. J. Nanopart. Res. 17, 56 (2015).
10. Erogbogbo, F., Yong, K., Roy, I., Xu, G., Prasad, P.N., and Swihart, M.T.: Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2, 873 (2008).
11. Pi, X., Yu, T., Yang, D.: Water-dispersible silicon-quantum-dot-containing micelles self-assembled from an amphiphilic polymer. Part. Part. Syst. Charact. 31, 751 (2014).
12. Sugimoto, H., Fujii, M., Imakita, K., Hayashi, S., and Akamatsu, K.: All-inorganic near-infrared luminescent colloidal silicon nanocrystals: high dispersibility in polar liquid by phosphorus and boron codoping. J. Phys. Chem. C 116, 17969 (2012).
13. Sugimoto, H., Fujii, M., Imakita, K., Hayashi, S., and Akamatsu, K.: Codoping n-and p-type impurities in colloidal silicon nanocrystals-controlling luminescence energy from below bulk band gap to visible range. J. Phys. Chem. C 117, 11850 (2013).
14. Sugimoto, H., Fujii, M., Fukuda, Y., Imakita, K., and Akamatsu, K.: All-inorganic water-dispersible silicon quantum dots: highly efficient near-infrared luminescence in a wide pH range. Nanoscale 6, 122 (2014).
15. Fujii, M., Sugimoto, H., and Imakita, K.: All-inorganic colloidal silicon nanocrystals—surface modification by boron and phosphorus co-doping. Nanotechnology 27, 262001 (2016).
16. Zhang, N., Chittasupho, C., Duangrat, C., Siahaan, T.J., and Berkland, C.: PLGA nanoparticle-peptide conjugate effectively targets intercellular cell-adhesion molecule-1. Bioconjug. Chem. 19, 145 (2008).
17. Xing, Y., Chaudry, Q., Shen, C., Kong, K.Y., Zhau, H.E., Chung, L.W., Petros, J.A., O'Regan, R.M., Yezhelyev, M.V., Simons, J.W., Wang, M.D., and Nie, S.: Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat. Protoc. 2, 1152 (2007).
18. Kolb, H.C., Finn, M.G., and Sharpless, K.B.: Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004 (2001).
19. Dasog, M., De Los Reyes, G.B., Titova, L.V., Hegmann, F.A., and Veinot, J.G.C.: Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. ACS Nano 8, 9636 (2014).
20. Tenney, A.S.: Nondestructive determination of the composition and thickness of thin films of pyrolytically deposited borosilicate glass by infrared absorption. J. Electrochem. Soc. 118, 1658 (1971).
21. Kaneko, T., Nemoto, D., Horiguchi, A., and Miyakawa, N.: FTIR analysis of a-SiC:H films grown by plasma enhanced CVD. J. Cryst. Growth 275, 1097 (2005).
22. Mukhopadhyay, S. and Ray, S.: Silicon rich silicon oxide films deposited by radio frequency plasma enhanced chemical vapor deposition method: optical and structural properties. Appl. Surf. Sci. 257, 9717 (2011).
23. Kamra, T., Chaudhary, S., Xu, C., Johansson, N., Montelius, L., Schnadt, J., and Ye, L.: Covalent immobilization of molecularly imprinted polymer nanoparticles using an epoxy silane. J. Colloid Interface Sci. 445, 277 (2015).
24. Allen, G.C., Sorbello, F., Altavilla, C., Castorina, A., and Ciliberto, E.: Macro-, micro- and nano-investigations on 3-aminopropyltrimethoxysilane self-assembly-monolayers. Thin Solid Films 483, 306 (2005).
25. Yang, C., Bley, R.A., Kauzlarich, S.M., Lee, H.W.H., and Delgado, G.R.: Synthesis of alkyl-terminated silicon nanoclusters by a solution route. J. Am. Chem. Soc. 121, 5191 (1999).
26. Yang, Z., De Los Reyes, G.B., Titova, L.V., Sychugov, I., Dasog, M., Linnros, J., Hegmann, F.A., and Veinot, J.G.C.: Evolution of the ultrafast photoluminescence of colloidal silicon Nanocrystals with changing surface chemistry. ACS Photonics 2, 595 (2015).
27. Yu, Y. and Korgel, B.A.: Controlled styrene monolayer capping of silicon nanocrystals by room temperature hydrosilylation. Langmuir 31, 6532 (2015).
28. De los Reyes, G.B., Dasog, M., Na, M., Titova, L.V., Veinot, J.G.C., and Hegmann, F.A.: Charge transfer state emission dynamics in blue-emitting functionalized silicon nanocrystals. Phys. Chem. Chem. Phys. 17, 30125 (2015).
29. Warner, J.H., Rubinsztein-Dunlop, H., and Tilley, R.D.: Surface morphology dependent photoluminescence from colloidal silicon nanocrystals. J. Phys. Chem. B 109, 19064 (2005).
30. Liu, X., Zhang, Y., Yu, T., Qiao, X., Gresback, R., Pi, X., and Yang, D.: Optimum quantum yield of the light emission from 2 to 10 nm hydrosilylated silicon quantum dots. Part. Part. Syst. Charact. 33, 44 (2016).
Type Description Title
WORD
Supplementary materials

Kanno supplementary material
Fig. S1-S4

 Word (158 KB)
158 KB

Water-dispersible near-infrared luminescent silicon nanocrystals –immobilization on substrate

  • Takashi Kanno (a1), Shinya Kano (a1), Hiroshi Sugimoto (a1), Yasuhiro Tada (a1) and Minoru Fujii (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed