Skip to main content Accessibility help
×
Home

Vacancy breathing by grain boundaries—a mechanism of memristive switching in polycrystalline oxides

  • Xiao Shen (a1), Yevgeniy S. Puzyrev (a1) and Sokrates T. Pantelides (a2)

Abstract

It is widely believed that switching to the conductive state in memristive materials is triggered by the external field that drives defect dynamics. In polycrystalline materials, grain boundaries are further believed to cause switching by enabling faster defect motion. Here, we report a first-principle study of oxygen vacancy dynamics at a grain boundary (GB) in polycrystalline ZnO and show that switching to the conductive state is triggered by a recombination-enhanced motion of vacancies perpendicular to the GB. We call this mechanism the “breathing” trigger of memristive switching.

Copyright

Corresponding author

*Address all correspondence to Xiao Shen at xiao.shen@vanderbilt.edu

References

Hide All
1Strukov, D.B., Snider, G.S., Stewart, D.R., and Williams, R.S.: The missing memristor found. Nature 453, 80 (2008).
2Chua, L.O. and Kang, S.M.: Memristive devices and systems. Proc. IEEE 64, 209 (1976).
3Akinaga, H. and Shima, H.: Resistive random access memory (ReRAM) based on metal oxides. IEEE 98, 2237 (2010).
4Muthuswamy, B. and Kokate, P.P.: Memristor-based chaotic circuits. IETE Tech. Rev. 26, 417 (2009).
5Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., and Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297 (2010).
6Pershin, Y.V. and Di Ventra, M.: Spin memristive systems: spin memory effects in semiconductor spintronics. Phys. Rev. B 78, 113309 (2008).
7Agapito, L.A., Alkis, S., Krause, J.L., and Cheng, H.-P.: Atomistic origins of molecular memristors. J. Phys. Chem. C 113, 20713 (2009).
8Chanthbouala, A., Garcia, V., Cherifi, R.O., Bouzehouane, K., Fusil, S., Moya, X., Xavier, S., Yamada, H., Deranlot, C., Mathur, N.D., Bibes, M., Barthélémy, A., and Grollier, J.: A ferroelectric memristor. Nat. Mater. 11, 860 (2012).
9Oblea, A.S., Timilsina, A., Moore, D., and Campbell, K.A.: Silver chalcogenide based memristor devices. In IEEE International Joint Conference on Neural Networks. Proceedings, 2010; p. 1.
10Asamitsu, A., Tomioka, Y., Kuwahara, H., and Tokura, Y.: Current switching of resistive states in magnetoresistive manganites. Nature 388, 50 (1997).
11Lee, H.Y., Chen, P-S., Wu, T-Y., Chen, Y.S., Chen, F., Wang, C-C., Tzeng, P-J., Lin, C.H., Tsai, M-J., and Lien, C.: HfOx bipolar resistive memory with robust endurance using AlCu as buffer electrode. IEEE Electron Device Lett. 30, 703 (2009).
12Baek, I.G., Lee, M.S., Seo, S., Lee, M.J., Seo, D.H., Suh, D-S., Park, J.C., Park, S.O., Kim, H.S., Yoo, I.K., Chungand, U-InMoon, I.T.: Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. In Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, 2004; p. 587.
13Chang, W-Y., Lai, Y-C., Wu, T-B., Wang, S-F., Chen, F., and Tsai, M-J.: Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications. Appl. Phys. Lett. 92, 022110 (2008).
14Xu, N., Liu, L., Sun, X., Liu, X., Han, D., Wang, Y., Han, R., Kang, J., and Yu, B.: Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories. Appl. Phys. Lett. 92, 232112 (2008).
15Lee, S., Kim, H., Yun, D.-J., Rhee, S.-W., and Yong, K.: Resistive switching characteristics of ZnO thin film grown on stainless steel for flexible nonvolatile memory devices. Appl. Phys. Lett. 95, 262113 (2009).
16McKenna, K. and Shluger, A.: The interaction of oxygen vacancies with grain boundaries in monoclinic HfO2. Appl. Phys. Lett. 95, 222111 (2009).
17Szot, K., Speier, W., Bihlmayer, G., and Waser, R.: Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312 (2006).
18Park, C., Jeon, S.H., Chae, S.C., Han, S., Park, B.H., Seo, S., and Kim, D-W.: Role of structural defects in the unipolar resistive switching characteristics of Pt/NiO/Pt structures. Appl. Phys. Lett. 93, 042102 (2008).
19Yu, S. and Wong, P.S.: A phenomenological model of oxygen ion transport for metal oxide resistive switching memory. In Memory Workshop (IMW), 2010 IEEE International, 2010; p. 54.
20Korner, W., Bristowe, P.D., and Elsasser, C.: Density functional theory study of stoichiometric and nonstoichiometric ZnO grain boundaries. Phys. Rev. B 84, 045305 (2011).
21Perdew, J., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
22Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).
23Kresse, G. and Furthmuller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
24Henkelman, G. and Jonsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978 (2000).
25Janotti, A. and Van de Walle, C.G.: Oxygen vacancies in ZnO. Appl. Phys. Lett. 87, 122102 (2005).
26Lang, D.V.: Recombination-enhanced reactions in semiconductors. Ann. Rev. of Mater. Sci. 12, 377 (1982).
27Itoh, N. and Stoneham, A.M.: Materials Modification by Electronic Excitation (Cambridge University Press, Cambridge, UK, 2001).
28Karazhanov, S. Zh., Zhang, Y., Wang, W.-L., Mascarenhas, A., and Deb, S.: Resonant defect states and strong lattice relaxation of oxygen vacancies in WO3. Phys. Rev. B 68, 233204 (2003).
29Gavartin, J.L., Muñoz Ramo, D., Shluger, A.L., Bersuker, G., and Lee, B.H.: Negative oxygen vacancies in HfO2 as charge traps in high-k stacks. Appl. Phys. Lett. 89, 082908 (2006).
30Kim, S., Moon, H., Gupta, D., Yoo, S., and Choi, Y.-K.: Resistive switching characteristics of Sol–Gel zinc oxide films for flexible memory applications. IEEE Trans. Electron Devices 56, 696 (2009).

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed