Skip to main content Accessibility help

Transmission electron microscopy with atomic resolution under atmospheric pressures

  • Sheng Dai (a1), Wenpei Gao (a1), Shuyi Zhang (a1) (a2), George W. Graham (a1) (a2) and Xiaoqing Pan (a1) (a3)...


Significant developments in micro-electrical-mechanical systems-based devices for use in transmission electron microscopy (TEM) sample holders have recently led to the commercialization of windowed gas cells that now enable the atomic-resolution visualization of phenomena occurring during gas–solid interactions at atmospheric pressure. In situ TEM study under atmospheric pressures provides unique information that is beneficial to correlating the structure–properties relationship of nanomaterials, particularly under real gaseous environments. We here provide a brief introduction of the advanced instrumentation of windowed gas cells and review recent progress of in situ atomic-resolution TEM study under atmospheric pressures, including some application examples of oxidation and reduction processes, dynamic growth of nanomaterials, catalytic reactions, and “operando” TEM.


Corresponding author

Address all correspondence to Xiaoqing Pan at


Hide All
1. Knoll, M. and Ruska, E.: Das elektronenmikroskop. Z. Phys. 78, 318 (1932).
2. Scherzer, O.: The theoretical resolution limit of the electron microscope. J. Appl. Phys. 20, 20 (1949).
3. Crewe, A.V., Wall, J., and Langmore, J.: Visibility of single atoms. Science 12, 1338 (1970).
4. Pennycook, S.J. and Boatner, L.A.: Chemically sensitive structure-imaging with a scanning transmission electron microscope. Nature 336, 565 (1988).
5. Muller, D.A., Sorsch, T., Moccio, S., Baumann, F.H., Evans-Lutterodt, K., and Timp, G.: The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758 (1999).
6. Williams, D.B. and Carter, C.B.: The transmission electron microscope (Springer, Berlin, 1996).
7. Haider, M., Uhlemann, S., Schwan, E., Kabius, B., and Urban, K.: Electron microscopy image enhanced. Nature 392, 768 (1998).
8. Batson, P.E., Dellby, N., and Krivanek, O.L.: Sub-ångstrom resolution using aberration corrected electron optics. Nature 418, 617 (2002).
9. Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H. Jr., and Pennycook, S.J.: Direct sub-angstrom imaging of a crystal lattice. Science 17, 1741 (2004).
10. Urban, K.W.: Studying atomic structures by aberration-corrected transmission electron microscopy. Science 25, 506 (2008).
11. Haque, M.A. and Saif, M.T.A.: Application of MEMS force sensors for in situ mechanical characterization of nano-scale thin films in SEM and TEM. Sens. Actuators A 239, 97 (2002).
12. Lu, S., Dikin, D.A., Zhang, S., Fisher, F.T., Lee, J., and Ruoff, Rodney S.: Realization of nanoscale resolution with a micromachined thermally actuated testing stage. Rev. Sci. Instrum. 75, 2154 (2004).
13. Zhu, Y., Moldovan, N., and Espinosa, H.D.: A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing of nanostructures. Appl. Phys. Lett. 86, 013506 (2005).
14. Haque, M.A., Espinosa, H.D., and Lee, H.J.: MEMS for in situ testing—Handling, actuation, loading, and displacement measurements. MRS Bull. 35, 375 (2010).
15. Allard, L.F., Bigelow, W.C., Jose-Yacaman, M., Nackashi, D.P., Damiano, J., and Mick, S.E.: A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures. Microsc. Res. Tech. 72, 208 (2009).
16. Creemer, J.F., Helveg, S., Kooyman, P.J., Molenbroek, A.M., Zandbergen, H.W., and Sarro, P.M.: A MEMS reactor for atomic-scale microscopy of nanomaterials under industrially relevant conditions. J. Micro Syst. 19, 254 (2010).
17. Allard, L.F., Overbury, S.H., Bigelow, W.C., Katz, M.B., Nackashi, D.P., and Damiano, J.: Novel MEMS-based gas-cell/heating specimen holder provides advanced imaging capabilities for in situ reaction studies. Microsc. Microanal. 18, 656 (2012).
18. Wu, F. and Yao, N.: Advances in windowed gas cells for in-situ TEM studies. Nano Energy 13, 735 (2015).
19. Boston, R., Schnepp, Z., Nemoto, Y., Sakka, Y., and Hall, S.R.: In situ TEM observation of a microcrucible mechanism of nanowire growth. Science 344, 623 (2014).
20. Poncharal, P., Wang, Z.L., Ugarte, D., and De Heer, W.A.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513 (1999).
21. Huang, J.Y., Zhong, L., Wang, C.M., Sullivan, J.P., Xu, W., Zhang, L.Q., Mao, S.X., Hudak, N.S., Liu, X.H., Subramanian, A., Fan, H., Qi, L., Kushima, A., and Li, J.: In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515 (2010).
22. Nelson, C.T., Gao, P., Jokisaari, J.R., Heikes, C., Adamo, C., Melville, A., Baek, S.H., Folkman, C.M., Winchester, B., Gu, Y., Liu, Y., Zhang, K., Wang, E., Li, J., Chen, L.Q., Eom, C.B., Schlom, D.G., and Pan, X.: Domain dynamics during ferroelectric switching. Science 334, 968 (2011).
23. Hansen, P.L., Wagner, J.B., Helveg, S., Rostrup-Nielsen, J.R., Clausen, B.S., and Topsøe, H.: Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053 (2002).
24. Yoshida, H., Kuwauchi, Y., Jinschek, J.R., Sun, K., Tanaka, S., Kohyama, M., Shimada, S., Haruta, M., and Takeda, S.: Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335, 317 (2012).
25. Zhang, L., Miller, B.K., and Crozier, P.A.: Atomic level in situ observation of surface amorphization in anatase nanocrystals during light irradiation in water vapor. Nano Lett. 13, 679 (2013).
26. Zheng, H., Smith, R.K., Jun, Y., Kisielowski, C., Dahmen, U., and Alivisatos, A.P.: Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 1309 (2009).
27. Zeng, Z., Zhang, X., Bustillo, K., Niu, K., Gammer, C., Xu, J., and Zheng, H.: In situ study of lithiation and delithiation of MoS2 nanosheets using electrochemical liquid cell transmission electron microscopy. Nano Lett. 15, 5214 (2015).
28. Wu, F. and Yao, N.: Advances in sealed liquid cells for in-situ TEM electrochemical investigation of lithium-ion battery. Nano Energy 11, 196 (2015).
29. Wang, Y., Chen, X., Cao, H., Deng, C., Cao, X., and Wang, P.: A structural study of Escherichia coli cells using an in situ liquid chamber TEM technology. J. Anal. Methods Chem. 2015, 829302 (2015).
30. Mehraeen, S., McKeown, J.T., Deshmukh, P.V., Evans, J.E., Abellan, P., Xu, P., Reed, B.W., Taheri, M.L., Fischione, P.E., and Browning, N.D.: A (S)TEM gas cell holder with localized laser heating for in situ experiments. Microsc. Microanal. 19, 470 (2013).
31. Marton, L.: La microscopie electronique des objets biologiques. Bull. Acad. R. Med. Belg. 21, 553 (1935).
32. Ruska, E.: Beitrag zur übermikroskopischen Abbildung bei höheren Drucken. Kolloid-Zeitschrift. 100, 212 (1942).
33. Casu, A., Sogne, E., Genovese, A., Di Benedetto, C., Mozo, S.L., Zuddas, E., Pagliari, F., and Falqui, A.: The new youth of the in situ transmission electron microscopy. (InTech, Rijeka, Croatia. DOI: 10.5772/63269, 2016).
34. Hansen, T.W. and Wagner, J.B.: Environmental transmission electron microscopy in an aberration-corrected environment. Microsc. Microanal. 18, 684 (2012).
35. Sharma, R.: Design and applications of environmental cell transmission electron microscope for in situ observations of gas-solid reactions. Microsc. Microanal. 7, 494 (2001).
36. Jinschek, J.R. and Helveg, S.: Image resolution and sensitivity in an environmental transmission electron microscope. Micron 43, 1156 (2012).
37. Jinschek, J.R.: Advances in the environmental transmission electron microscope (ETEM) for nanoscale in situ studies of gas–solid interactions. Chem. Commun. 50, 2696 (2014).
38. Xin, H.L., Niu, K., Alsem, D.H., and Zheng, H.: In situ TEM study of catalytic nanoparticle reactions in atmospheric pressure gas environment. Microsc. Microanal. 19, 1558 (2013).
39. Zhang, X.F. and Kamino, T.: Imaging gas–solid interactions in an atomic resolution environmental TEM. Micros Today 14, 16 (2006).
40. Heide, H.G.: Electron microscopic observation of specimens under controlled gas pressure. J. Cell Biol. 13, 147 (1962).
41. Tabata, O. and Tsuchiya, T.: Reliability of MEMS (Wiley-VCH, Weinheim, 2007).
42. Doll, T., Hochberg, M., Barsic, D., and Scherer, A.: Micro-machined electron transparent alumina vacuum windows. Sens. Actuators A 87, 52 (2000).
43. Yaguchi, T., Suzuki, M., Watabe, A., Nagakubo, Y., Ueda, K., and Kamino, T.: Development of a high temperature-atmospheric pressure environmental cell for high-resolution TEM. J. Electron Microsc. 60, 217 (2011).
44. de Jonge, N., Bigelow, W.C., and Veith, G.M.: Atmospheric pressure scanning transmission electron microscopy. Nano Lett. 10, 1028 (2010).
45. Hansen, T.W. and Wagner, J.B.: Catalysts under controlled atmospheres in the transmission electron microscope. ACS Catal. 4, 1673 (2014).
46. Kawasaki, T., Ueda, K., Ichihashi, M., and Tanji, T.: Improvement of windowed type environmental-cell transmission electron microscope for in situ observation of gas-solid interactions. Rev. Sci. Instrum. 80, 113701 (2009).
47. Alan, T., Yokosawa, T., Gaspar, J., Pandraud, G., Paul, O., Creemer, F., Sarro, P.M., and Zandbergen, H.W.: Micro-fabricated channel with ultra-thin yet ultra-strong windows enables electron microscopy under 4-bar pressure. Appl. Phys. Lett. 100, 4 (2012).
48. Ghassemi, H., Harlow, W., Mashtalir, O., Beidaghi, M., Lukatskaya, M.R., Gogotsi, Y., and Taheri, M.L.: In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2 . J. Mater. Chem. A 2, 14339 (2014).
49. Shen, X., Dai, S., Zhang, C., Zhang, S., Sharkey, S.M., Graham, G.W., Pan, X., and Peng, Z.: In situ atomic-scale observation of the two-dimensional Co(OH)2 transition at atmospheric pressure. Chem. Mater. 29, 4572 (2017).
50. Wu, Y.A., Li, L., Li, Z., Kinaci, A., Chan, M.K.Y., Sun, Y., Guest, J.R., McNulty, I., Rajh, T., and Liu, Y.: Visualizing redox dynamics of a single Ag/AgCl heterogeneous nanocatalyst at atomic resolution. ACS Nano 10, 3738 (2016).
51. Dai, S., Hou, Y., Onoue, M., Zhang, S., Gao, W., Yan, X., Graham, G.W., Wu, R., and Pan, X.: Revealing surface elemental composition and dynamic processes involved in facet-dependent oxidation of Pt3Co nanoparticles via in situ transmission electron microscopy. Nano Lett. 17, 4683 (2017).
52. Granqvist, C., Kish, L., and Marlow, W.: Gas phase nanoparticle synthesis (Springer, Berlin, Germany, 2004).
53. Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H.: One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003).
54. Rao, C.N.R., Müller, A., and Cheetham, A.K.: The chemistry of nanomaterials: synthesis, properties and applications (Wiley-VCH, Weinheim, Germany, 2004).
55. Dai, S., You, Y., Zhang, S., Cai, W., Xu, M., Xie, L., Wu, R., Graham, G.W., and Pan, X.: In-situ atomic-scale observation of oxygen-driven core-shell formation in Pt3Co nanoparticles. Nat. Commun. 8, 204 (2017).
56. Aguiar, J.A., Wozny, S., Holesinger, T.G., Aoki, T., Patel, M.K., Yang, M., Berry, J.J., Al-Jassim, M., Zhou, W., and Zhu, K.: In situ investigation of the formation and metastability of formamidinium lead tri-iodide perovskite solar cells. Energy Environ. Sci. 9, 2372 (2016).
57. Avanesian, T., Dai, S., Kale, M.J., Graham, G.W., Pan, X., and Christopher, P.: Quantitative and atomic-scale view of CO-induced Pt nanoparticle surface reconstruction at saturation coverage via DFT calculations coupled with in situ TEM and IR. J. Am. Chem. Soc. 139, 4551 (2017).
58. Bourane, A., and Bianchi, D.: Heats of adsorption of the linear CO species on Pt/Al2O3 using infrared spectroscopy: impact of the Pt dispersion. J. Catal. 218, 447 (2003).
59. Jiang, Y., Li, H., Wu, Z., Ye, W., Zhang, H., Wang, Y., Sun, C., and Zhang, Z.: In Situ observation of hydrogen-induced surface faceting for palladium-copper nanocrystals at atmospheric pressure. Angew. Chem. 128, 12615 (2016).
60. Onn, T.M., Zhang, S., Arroyo-Ramirez, L., Chung, Y., Graham, G.W., Pan, X., and Gorte, R.J.: Improved thermal stability and methane-oxidation activity of Pd/Al2O3 catalysts by atomic layer deposition of ZrO2 . ACS Catal. 5, 5696 (2015).
61. Zhang, S., Cargnello, M., Cai, W., Murray, C.B., Graham, G.W., and Pan, X.: Revealing particle growth mechanisms by combining high-surface-area catalysts made with monodisperse particles and electron microscopy conducted at atmospheric pressure. J. Catal. 337, 240 (2016).
62. Dai, S., Zhang, S., Katz, M.B., Graham, G.W., and Pan, X.: In situ observation of Rh-CaTiO3 catalysts during reduction and oxidation treatments by transmission electron microscopy. ACS Catal. 7, 1579 (2017).
63. Matsubu, J.C., Zhang, S., DeRita, L., Marinkovic, N.S., Chen, J.G., Graham, G.W., Pan, X., and Christopher, P.: Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts. Nat. Chem. 9, 120 (2017).
64. Zhang, S., Plessow, P.N., Willis, J.J., Dai, S., Xu, M., Graham, G.W., Cargnello, M., Abild-Pedersen, F., and Pan, X.: Dynamical observation and detailed description of catalysts under strong metal-support interaction. Nano Lett. 16, 4528 (2016).
65. Tauster, S., Fung, S., and Garten, R.J.: Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 100, 170 (1978).
66. Zhang, S., Chen, C., Cargnello, M., Fornasiero, P., Gorte, R.J., Graham, G.W., and Pan, X.: Dynamic structural evolution of supported palladium-ceria core-shell catalysts revealed by in situ electron microscopy. Nat. Commun. 6, 7778 (2015).
67. Bañares, M.A. and Wachs, I.E.: Molecular structures of supported metal oxide catalysts under different environments. J. Raman Spectrosc. 33, 359 (2002).
68. Bañares, M.A.: Operando methodology: combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions. Catal. Today 100, 71 (2005).
69. Giorgio, S., Cabie, M., and Henry, C.R.: Dynamic observations of Au catalysts by environmental electron microscopy. Gold Bull. 41, 167 (2008).
70. Vendelbo, S.B., Elkjær, C.F., Falsig, H., Puspitasari, I., Dona, P., Mele, L., Morana, B., Nelissen, B.J., van Rijn, R., Creemer, J.F., Kooyman, P.J., and Helveg, S.: Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat. Mater. 13, 884 (2014).
71. Li, Y., Zakharov, D., Zhao, S., Tappero, R., Jung, U., Elsen, A., Baumann, Ph, Nuzzo, R.G., Stach, E.A., and Frenkel, A.I.: Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes. Nat. Commun. 6, 7583 (2015).
72. Crozier, P.A. and Hansen, T.W.: In situ and operando transmission electron microscopy of catalytic materials. MRS Bull. 40, 38 (2015).
73. Taheri, M.L., Stach, E.A., Arslan, I., Crozier, P.A., Kabius, B.C., LaGrange, T., Minor, A.M., Takeda, S., Tanase, M., Wagner, J.B., and Sharma, R.: Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy 170, 86 (2016).
74. Wu, J., Shan, H., Chen, W., Gu, X., Tao, P., Song, C., Shang, W., and Deng, T.: In situ environmental TEM in imaging gas and liquid phase chemical reactions for materials research. Adv. Mater. 28, 9686 (2016).
75. Faruqi, A.R. and McMullan, G.: Electronic detectors for electron microscopy. Q. Rev. Biophys. 44, 357 (2011).
76. Liao, H.G., Zherebetskyy, D., Xin, H., Czarnik, C., Ercius, P., Elmlund, H., Pan, M., Wang, L.W., and Zheng, H.: Facet development during platinum nanocube growth. Science 345, 916 (2014).
77. Hilbert, S.A., Uiterwaal, C., Barwick, B., Batelaan, H., and Zewail, A.H.: Temporal lenses for attosecond and femtosecond electron pulses. Proc. Natl. Acad. Sci. USA 106, 10558 (2009).
78. Flannigan, D.J., Barwick, B., and Zewail, A.H.: Biological imaging with 4D ultrafast electron microscopy. Proc. Natl. Acad. Sci. USA 107, 9933 (2010).
79. Flannigan, D.J. and Zewail, A.H.: 4D electron microscopy: principles and applications. Acc. Chem. Res. 45, 1828 (2012).
80. Plemmons, D.A., Suri, P.K., and Flannigan, D.J.: Probing structural and electronic dynamics with ultrafast electron microscopy. Chem. Mater. 27, 3178 (2015).
81. Mansour, O., Kadoun, A., Khouchaf, L., and Mathieu, C.: Monte Carlo simulation of the electron beam scattering under water vapor environment at low energy. Vacuum 87, 11 (2013).
82. Hansen, T.W. and Wagner, J.B.: Controlled atmosphere transmission electron microscopy (Springer, Heidelberg, 2016).
83. Wu, J., Helveg, S., Ullmann, S., Peng, Z., and Bell, A.T.: Growth of encapsulating carbon on supported Pt nanoparticles studied by in situ TEM. J. Catal. 338, 295 (2016).
84. McMullan, G., Faruqi, A.R., Clare, D., and Henderson, R.: Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147, 156 (2014).
85. Stevens, A., Yang, H., Carin, L., Arslan, I., and Browning, N.D.: The potential for Bayesian compressive sensing to significantly reduce electron dose in high-resolution STEM images. Microscopy 63, 41 (2014).
86. Stevens, A., Kovarik, L., Abellan, P., Yuan, X., Carin, L., and Browning, N.D.: Applying compressive sensing to TEM video: a substantial frame rate increase on any camera. Adv. Struct. Chem. Imaging 1, 10 (2015).
87. Browning, N.D., Stevens, A., Kovarik, L., Liyu, A., Mehdi, B.L., Stanfill, B., Reehl, S., and Bramer, L.: Implementing sub-sampling methods for low-dose (scanning) transmission electron microscopy (S/TEM). Microsc. Microanal. 23, 82 (2017).
88. Xie, D.G., Wang, Z.J., Sun, J., Li, J., Ma, E., and Shan, Z.W.: In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface. Nat. Mater. 14, 899 (2015).
89. Luo, L., Liu, B., Song, S., Xu, W., Zhang, J.G., and Wang, C.: Revealing the reaction mechanisms of Li-O2 batteries using environmental transmission electron microscopy. Nat. Nanotechnol. 12, 535 (2017).
90. Dai, S., Zhao, J., He, M., Wang, X., Wan, J., Shan, Z., and Zhu, J.: Elastic properties of GaN nanowires: revealing the influence of planar defects on Young's modulus at nanoscale. Nano Lett. 15, 8 (2015).
91. Ma, J.W., Lee, W.J., Bae, J.M., Jeong, K.S., Oh, S.H., Kim, J.H., Kim, S.H., Seo, J.H., Ahn, J.P., Kim, H., and Cho, M.H.: Carrier mobility enhancement of tensile strained Si and SiGe nanowires via surface defect engineering. Nano Lett. 15, 7204 (2015).
92. Unocic, R.R., Sacci, R.L., Brown, G.M., Veith, G.M., Dudney, N.J., More, K.L., Walden, F.S., Gardiner, D.S., Damiano, J., and Nackashi, D.P.: Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal. 20, 452 (2014).

Related content

Powered by UNSILO

Transmission electron microscopy with atomic resolution under atmospheric pressures

  • Sheng Dai (a1), Wenpei Gao (a1), Shuyi Zhang (a1) (a2), George W. Graham (a1) (a2) and Xiaoqing Pan (a1) (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.