Skip to main content Accessibility help

Toward bioimplantable and biocompatible flexible energy harvesters using piezoelectric ceramic materials

  • Chang Kyu Jeong (a1) (a2) (a3)


This article presents a comprehensive overview of currently available research on bioimplantable energy harvesters, with a specific focus on their fabrication and issue of biocompatibility. Both the achievements and limitations of the field are pointed out from the standpoint of materials science and engineering as directions for future research. Particular attention is paid to the controversy over the use of lead-based or lead-free piezoelectric ceramics in biomedical applications, which is closely related to different temporalities of research on biological conditions. This report is intended to serve as a reference guide for developing the next generation of piezoelectric biomedical devices.


Corresponding author

Address all correspondence to Chang Kyu Jeong at


Hide All
1.Connolly, S.J. and Yusuf, S.: Evaluation of the implantable cardioverter defibrillator in survivors of cardiac arrest: the need for randomized trials. Am. J. Cardiol. 69, 959 (1992).
2.Meng, E. and Hoang, T.: MEMS-enabled implantable drug infusion pumps for laboratory animal research, preclinical, and clinical applications. Adv. Drug Deliv. Rev. 64, 1628 (2012).
3.Miller, M.A., Neuzil, P., Dukkipati, S.R., and Reddy, V.Y.: Leadless cardiac pacemakers. J. Am. Coll. Cardiol. 66, 1179 (2015).
4.Bazaka, K. and Jacob, M.: Implantable devices: issues and challenges. Electronics 2, 1 (2012).
5.Wang, Z.L., Wang, X., Song, J., Liu, J., and Gao, Y.: Piezoelectric nanogenerators for self-powered nanodevices. IEEE Pervasive Comput. 7, 49 (2008).
6.Qi, Y. and McAlpine, M.C.: Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci. 3, 1275 (2010).
7.Starner, T.: Human-powered wearable computing. IBM Syst. J. 35, 618 (1996).
8.Roundy, S., Leland, E.S., Baker, J., Carleton, E., Reilly, E., Lai, E., Otis, B., Rabaey, J.M., Sundararajan, V., and Wright, P.K.: Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput. 4, 28 (2005).
9.Wang, Z.L.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242 (2006).
10.Han, S.A., Kim, T.-H., Kim, S.K., Lee, K.H., Park, H.-J., Lee, J.-H., and Kim, S.-W.: Point-defect-passivated MoS2 nanosheet-based high performance piezoelectric nanogenerator. Adv. Mater. 30, 1800342 (2018).
11.Won, S.S., Seo, H., Kawahara, M., Glinsek, S., Lee, J., Kim, Y., Jeong, C.K., Kingon, A.I., and Kim, S.-H.: Flexible vibrational energy harvesting devices using strain-engineered perovskite piezoelectric thin films. Nano Energy 55, 182 (2019).
12.Han, J., Park, K.-I., and Jeong, C.: Dual-structured flexible piezoelectric film energy harvesters for effectively integrated performance. Sensors 19, 1444 (2019).
13.Lee, B.-Y., Kim, D.H., Park, J., Park, K.-I., Lee, K.J., and Jeong, C.K.: Modulation of surface physics and chemistry in triboelectric energy harvesting technologies. Sci. Technol. Adv. Mater. 20, 758 (2019).
14.Ahmed, A., Hassan, I., El-Kady, M.F., Radhi, A., Jeong, C.K., Selvaganapathy, P.R., Zu, J., Ren, S., Wang, Q., and Kaner, R.B.: Integrated triboelectric nanogenerators in the era of the internet of things. Adv. Sci. 6, 1802230 (2019).
15.Park, D.Y., Joe, D.J., Kim, D.H., Park, H., Han, J.H., Jeong, C.K., Park, H., Park, J.G., Joung, B., and Lee, K.J.: Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv. Mater. 29, 1702308 (2017).
16.Khan, U., Hinchet, R., Ryu, H., and Kim, S.-W.: Research update: nanogenerators for self-powered autonomous wireless sensors. APL Mater. 5, 073803 (2017).
17.Yeo, H.G., Jung, J., Sim, M., Jang, J.E., and Choi, H.: Integrated piezoelectric aln thin film with SU-8/PDMS supporting layer for flexible sensor array. Sensors 20, 315 (2020).
18.Liu, Q., Wang, X.-X., Song, W.-Z., Qiu, H.-J., Zhang, J., Fan, Z., Yu, M., and Long, Y.-Z.: Wireless single-electrode self-powered piezoelectric sensor for monitoring. ACS Appl. Mater. Interfaces 12, 8288 (2020).
19.Niu, S., Wang, X., Yi, F., Zhou, Y.S., and Wang, Z.L.: A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 6, 8975 (2015).
20.Wang, J., Li, S., Yi, F., Zi, Y., Lin, J., Wang, X., Xu, Y., and Wang, Z.L.: Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 7, 12744 (2016).
21.Yang, P.-K., Lin, L., Yi, F., Li, X., Pradel, K.C., Zi, Y., Wu, C.-I., He, J.-H., Zhang, Y., and Wang, Z.L.: A flexible, stretchable and shape-adaptive approach for versatile energy conversion and self-powered biomedical monitoring. Adv. Mater. 27, 3817 (2015).
22.Yang, R., Qin, Y., Li, C., Zhu, G., and Wang, Z.L.: Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 9, 1201 (2009).
23.Zhang, H., Zhang, X.-S., Cheng, X., Liu, Y., Han, M., Xue, X., Wang, S., Yang, F., Zhang, S.A.S.H., and Xu, Z.: A flexible and implantable piezoelectric generator harvesting energy from the pulsation of ascending aorta: in vitro and in vivo studies. Nano Energy 12, 296 (2015).
24.Li, Z., Zhu, G., Yang, R., Wang, A.C., and Wang, Z.L.: Muscle-driven in vivo nanogenerator. Adv. Mater. 22, 2534 (2010).
25.Yuan, M., Cheng, L., Xu, Q., Wu, W., Bai, S., Gu, L., Wang, Z., Lu, J., Li, H., Qin, Y., Jing, T., and Wang, Z.L.: Biocompatible nanogenerators through high piezoelectric coefficient 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires for in-vivo applications. Adv. Mater. 26, 7432 (2014).
26.Dagdeviren, C., Yang, B.D., Su, Y., Tran, P.L., Joe, P., Anderson, E., Xia, J., Doraiswamy, V., Dehdashti, B., Feng, X., Lu, B., Poston, R., Khalpey, Z., Ghaffari, R., Huang, Y., Slepian, M.J., and Rogers, J.A.: Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl. Acad. Sci. USA 111, 1927 (2014).
27.Lu, B., Chen, Y., Ou, D., Chen, H., Diao, L., Zhang, W., Zheng, J., Ma, W., Sun, L., and Feng, X.: Ultra-flexible piezoelectric devices integrated with heart to harvest the biomechanical energy. Sci. Rep. 5, 16065 (2015).
28.Cheng, L., Yuan, M., Gu, L., Wang, Z., Qin, Y., Jing, T., and Wang, Z.L.: Wireless, power-free and implantable nanosystem for resistance-based biodetection. Nano Energy 15, 598 (2015).
29.Cheng, X., Xue, X., Ma, Y., Han, M., Zhang, W., Xu, Z., Zhang, H., and Zhang, H.: Implantable and self-powered blood pressure monitoring based on a piezoelectric thinfilm: simulated, in vitro and in vivo studies. Nano Energy 22, 453 (2016).
30.Yu, Y., Sun, H., Orbay, H., Chen, F., England, C.G., Cai, W., and Wang, X.: Biocompatibility and in vivo operation of implantable mesoporous PVDF-based nanogenerators. Nano Energy 27, 275 (2016).
31.Zhou, J., Xu, N.S., and Wang, Z.L.: Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Adv. Mater. 18, 2432 (2006).
32.Li, Z., Yang, R., Yu, M., Bai, F., Li, C., and Wang, Z.L.: Cellular level biocompatibility and biosafety of ZnO nanowires. J. Phys. Chem. C 112, 20114 (2008).
33.Choi, K., Choi, W., Yu, C., and Park, Y.T.: Enhanced piezoelectric behavior of PVDF nanocomposite by AC dielectrophoresis alignment of ZnO nanowires. J. Nanomater. 2017, 1 (2017).
34.Natta, L., Mastronardi, V.M., Guido, F., Algieri, L., Puce, S., Pisano, F., Rizzi, F., Pulli, R., Qualtieri, A., and De Vittorio, M.: Soft and flexible piezoelectric smart patch for vascular graft monitoring based on aluminum nitride thin film. Sci. Rep. 9, 8392 (2019).
35.Lamanna, L., Rizzi, F., Guido, F., Algieri, L., Marras, S., Mastronardi, V.M., Qualtieri, A., and De Vittorio, M.: Flexible and transparent aluminum-nitride-based surface-acoustic-wave device on polymeric polyethylene naphthalate. Adv. Electron. Mater. 5, 1900095 (2019).
36.Algieri, L., Todaro, M.T., Guido, F., Mastronardi, V., Desmaële, D., Qualtieri, A., Giannini, C., Sibillano, T., and De Vittorio, M.: Flexible piezoelectric energy-harvesting exploiting biocompatible AlN thin films grown onto spin-coated polyimide layers. ACS Appl. Energy Mater. 1, 5203 (2018).
37.Abels, C., Mastronardi, V., Guido, F., Dattoma, T., Qualtieri, A., Megill, W., De Vittorio, M., and Rizzi, F.: Nitride-based materials for flexible mems tactile and flow sensors in robotics. Sensors 17, 1080 (2017).
38.Bowen, C.R., Kim, H.A., Weaver, P.M., and Dunn, S.: Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7, 25 (2014).
39.Park, K.-I., Xu, S., Liu, Y., Hwang, G.-T., Kang, S.-J.L., Wang, Z.L., and Lee, K.J.: Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett. 10, 4939 (2010).
40.Chen, X., Xu, S., Yao, N., and Shi, Y.: 1.6 V Nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 2133 (2010).
41.Qi, Y., Kim, J., Nguyen, T.D., Lisko, B., Purohit, P.K., and McAlpine, M.C.: Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11, 1331 (2011).
42.Hwang, G.-T., Park, H., Lee, J.-H., Oh, S., Park, K.-I., Byun, M., Park, H., Ahn, G., Jeong, C.K., No, K., Kwon, H., Lee, S.-G., Joung, B., and Lee, K.J.: Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater. 26, 4880 (2014).
43.Hwang, G.-T., Kim, Y., Lee, J.-H., Oh, S., Jeong, C.K., Park, D.Y., Ryu, J., Kwon, H., Lee, S.-G., Joung, B., Kim, D., and Lee, K.J.: Self-powered deep brain stimulation via a flexible PIMNT energy harvester. Energy Environ. Sci. 8, 2677 (2015).
44.Kim, D.H., Shin, H.J., Lee, H., Jeong, C.K., Park, H., Hwang, G.-T., Lee, H.-Y., Joe, D.J., Han, J.H., Lee, S.H., Kim, J., Joung, B., and Lee, K.J.: In vivo self-powered wireless transmission using biocompatible flexible energy harvesters. Adv. Funct. Mater. 27, 1700341 (2017).
45.Hong, C.-H., Kim, H.-P., Choi, B.-Y., Han, H.-S., Son, J.S., Ahn, C.W., and Jo, W.: Lead-free piezoceramics – where to move on? J. Materiomics 2, 1 (2016).
46.Rödel, J., Jo, W., Seifert, K.T.P., Anton, E.-M., Granzow, T., and Damjanovic, D.: Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153 (2009).
47.Inaoka, T., Shintaku, H., Nakagawa, T., Kawano, S., Ogita, H., Sakamoto, T., Hamanishi, S., Wada, H., and Ito, J.: Piezoelectric materials mimic the function of the cochlear sensory epithelium. Proc. Natl. Acad. Sci. USA 108, 18390 (2011).
48.Wang, Y.R., Zheng, J.M., Ren, G.Y., Zhang, P.H., and Xu, C.: A flexible piezoelectric force sensor based on PVDF fabrics. Smart Mater. Struct. 20, 045009 (2011).
49.Jeong, C.K., Hyeon, D.Y., Hwang, G.-T., Lee, G.-J., Lee, M.-K., Park, J.-J., and Park, K.-I.: Nanowire-percolated piezoelectric copolymer-based highly transparent and flexible self-powered sensors. J. Mater. Chem. A 7, 25481 (2019).
50.Zhang, Y., Zhu, W., Jeong, C.K., Sun, H., Yang, G., Chen, W., and Wang, Q.: A microcube-based hybrid piezocomposite as a flexible energy generator. RSC Adv. 7, 32502 (2017).
51.Laroche, G., Marois, Y., Guidoin, R., King, M.W., Martin, L., How, T., and Douville, Y.: Polyvinylidene fluoride (PVDF) as a biomaterial: from polymeric raw material to monofilament vascular suture. J. Biomed. Mater. Res. 29, 1525 (1995).
52.Zhang, Q.M.: Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280, 2101 (1998).
53.Xu, H., Cheng, Z.-Y., Olson, D., Mai, T., Zhang, Q.M., and Kavarnos, G.: Ferroelectric and electromechanical properties of poly(vinylidene-fluoride–trifluoroethylene–chlorotrifluoroethylene) terpolymer. Appl. Phys. Lett. 78, 2360 (2001).
54.Bar-Cohen, Y. and Zhang, Q.: Electroactive polymer actuators and sensors. MRS Bull. 33, 173 (2008).
55.Kim, H., Manriquez, L.C.D., Islam, M.T., Chavez, L.A., Regis, J.E., Ahsan, M.A., Noveron, J.C., Tseng, T.-L.B., and Lin, Y.: 3D printing of polyvinylidene fluoride/photopolymer resin blends for piezoelectric pressure sensing application using the stereolithography technique. MRS Commun. 9, 1115 (2019).
56.Li, J., Kang, L., Yu, Y., Long, Y., Jeffery, J.J., Cai, W., and Wang, X.: Study of long-term biocompatibility and bio-safety of implantable nanogenerators. Nano Energy 51, 728 (2018).
57.Katsouras, I., Asadi, K., Li, M., van Driel, T.B., Kjær, K.S., Zhao, D., Lenz, T., Gu, Y., Blom, P.W.M., Damjanovic, D., Nielsen, M.M., and de Leeuw, D.M.: The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride). Nat. Mater. 15, 78 (2016).
58.Liu, Y., Aziguli, H., Zhang, B., Xu, W., Lu, W., Bernholc, J., and Wang, Q.: Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary. Nature 562, 96 (2018).
59.Liu, Y., Zhang, B., Haibibu, A., Xu, W., Han, Z., Lu, W., Bernholc, J., and Wang, Q.: Insights into the morphotropic phase boundary in ferroelectric polymers from the molecular perspective. J. Phys. Chem. C 123, 8727 (2019).
60.Liu, Y., Han, Z., Xu, W., Haibibu, A., and Wang, Q.: Composition-dependent dielectric properties of poly(vinylidene fluoride-trifluoroethylene)s near the morphotropic phase boundary. Macromolecules 52, 6741 (2019).
61.Liu, Y. and Wang, Q.: Ferroelectric polymers exhibiting negative longitudinal piezoelectric coefficient: progress and prospects. Adv. Sci. 7, 1902468 (2020).
62.Qiu, C., Wang, B., Zhang, N., Zhang, S., Liu, J., Walker, D., Wang, Y., Tian, H., Shrout, T.R., Xu, Z., Chen, L.-Q., and Li, F.: Transparent ferroelectric crystals with ultrahigh piezoelectricity. Nature 577, 350 (2020).
63.Pan, H., Li, F., Liu, Y., Zhang, Q., Wang, M., Lan, S., Zheng, Y., Ma, J., Gu, L., Shen, Y., Yu, P., Zhang, S., Chen, L.-Q., Lin, Y.-H., and Nan, C.-W.: Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science 365, 578 (2019).
64.Li, F., Lin, D., Chen, Z., Cheng, Z., Wang, J., Li, C., Xu, Z., Huang, Q., Liao, X., Chen, L.-Q., Shrout, T.R., and Zhang, S.: Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17, 349 (2018).
65.Datta, A., Choi, Y.S., Chalmers, E., Ou, C., and Kar-Narayan, S.: Piezoelectric Nylon-11 nanowire arrays grown by template wetting for vibrational energy harvesting applications. Adv. Funct. Mater. 27, 1604262 (2017).
66.Chae, I., Jeong, C.K., Ounaies, Z., and Kim, S. H.: Review on electromechanical coupling properties of biomaterials. ACS Appl. Bio. Mater. 1, 936 (2018).
67.Zhang, Y., Jeong, C.K., Wang, J., Sun, H., Li, F., Zhang, G., Chen, L.-Q., Zhang, S., Chen, W., and Wang, Q.: Flexible energy harvesting polymer composites based on biofibril-templated 3-dimensional interconnected piezoceramics. Nano Energy 50, 35 (2018).
68.Zhang, Y., Jeong, C.K., Yang, T., Sun, H., Chen, L.-Q., Zhang, S., Chen, W., and Wang, Q.: Bioinspired elastic piezoelectric composites for high-performance mechanical energy harvesting. J. Mater. Chem. A 6, 14546 (2018).
69.Baek, C., Wang, J.E., Ryu, S., Kim, J.-H., Jeong, C.K., Park, K.-I., and Kim, D.K.: Facile hydrothermal synthesis of BaZrxTi1−x O3 nanoparticles and their application to a lead-free nanocomposite generator. RSC Adv. 7, 2851 (2017).
70.Won, S.S., Kawahara, M., Ahn, C.W., Lee, J., Lee, J., Jeong, C.K., Kingon, A.I., and Kim, S.: Lead-free Bi0.5(Na0.78K0.22)TiO3 nanoparticle filler–elastomeric composite films for paper-based flexible power generators. Adv. Electron. Mater. 6, 1900950 (2020).
71.Park, S., Peddigari, M., Kim, J.H., Kim, E., Hwang, G.-T., Kim, J.-W., Ahn, C.-W., Choi, J.-J., Hahn, B.-D., Choi, J.-H., Yoon, W.-H., Park, D.-S., Park, K.-I., Jeong, C.K., Lee, J.W., and Min, Y.: Selective phase control of dopant-free potassium sodium niobate perovskites in solution. Inorg. Chem. 59, 3042 (2020).
72.Wu, H., Zhang, Y., Wu, J., Wang, J., and Pennycook, S.J.: Microstructural origins of high piezoelectric performance: a pathway to practical lead-free materials. Adv. Funct. Mater. 29, 1902911 (2019).
73.Jeong, C.K., Han, J.H., Palneedi, H., Park, H., Hwang, G.-T., Joung, B., Kim, S.-G., Shin, H.J., Kang, I.-S., Ryu, J., and Lee, K.J.: Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. APL Mater. 5, 074102 (2017).
74.Ibn-Mohammed, T., Koh, S.C.L., Reaney, I.M., Sinclair, D.C., Mustapha, K.B., Acquaye, A., and Wang, D.: Are lead-free piezoelectrics more environmentally friendly? MRS Commun. 7, 1 (2017).
75.Park, K.-I., Son, J.H., Hwang, G.-T., Jeong, C.K., Ryu, J., Koo, M., Choi, I., Lee, S.H., Byun, M., Wang, Z.L., and Lee, K.J.: Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 26, 2514 (2014).
76.Shrout, T.R. and Zhang, S.: Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceramics 19, 113 (2007).
77.Maeder, M.D., Damjanovic, D., and Setter, N.: Lead free piezoelectric materials. J. Electroceramics 13, 385 (2004).
78.Wu, J., Xiao, D., and Zhu, J.: Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115, 2559 (2015).
79.Takenaka, T., Nagata, H., Hiruma, Y., Yoshii, Y., and Matumoto, K.: Lead-free piezoelectric ceramics based on perovskite structures. J. Electroceramics 19, 259 (2007).
80.Yang, C. and Suo, Z.: Hydrogel ionotronics. Nat. Rev. Mater. 3, 125 (2018).
81.Yeo, H.G., Ma, X., Rahn, C., and Trolier-McKinstry, S.: Efficient piezoelectric energy harvesters utilizing (001) textured bimorph PZT films on flexible metal foils. Adv. Funct. Mater. 26, 5940 (2016).
82.Won, S.S., Lee, J., Venugopal, V., Kim, D.-J., Lee, J., Kim, I.W., Kingon, A.I., and Kim, S.-H.: Lead-free Mn-doped (K0.5, Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications. Appl. Phys. Lett. 108, 232908 (2016).
83.Yeo, H.G., Xue, T., Roundy, S., Ma, X., Rahn, C., and Trolier-McKinstry, S.: Strongly (001) oriented bimorph PZT film on metal foils grown by RF-sputtering for wrist-worn piezoelectric energy harvesters. Adv. Funct. Mater. 28, 1801327 (2018).
84.Ko, Y.J., Kim, D.Y., Won, S.S., Ahn, C.W., Kim, I.W., Kingon, A.I., Kim, S.-H., Ko, J.-H., and Jung, J.H.: Flexible Pb(Zr0.52Ti0.48)O3 films for a hybrid piezoelectric-pyroelectric nanogenerator under harsh environments. ACS Appl. Mater. Interfaces 8, 6504 (2016).
85.Zhang, H. and Chiao, M.: Anti-fouling coatings of poly(dimethylsiloxane) devices for biological and biomedical applications. J. Med. Biol. Eng. 35, 143 (2015).
86.Wong, I. and Ho, C.-M.: Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid. Nanofluidics 7, 291 (2009).
87.Makamba, H., Kim, J.H., Lim, K., Park, N., and Hahn, J.H.: Surface modification of poly(dimethylsiloxane) microchannels. Electrophoresis 24, 3607 (2003).
88.Yao, X., Liu, J., Yang, C., Yang, X., Wei, J., Xia, Y., Gong, X., and Suo, Z.: Hydrogel paint. Adv. Mater. 31, 1903062 (2019).
89.Brassart, L., Liu, Q., and Suo, Z.: Mixing by shear, dilation, swap, and diffusion. J. Mech. Phys. Solids 112, 253 (2018).
90.Lee, G.-J., Lee, M.-K., Park, J.-J., Hyeon, D.Y., Jeong, C.K., and Park, K.-I.: Piezoelectric energy harvesting from two-dimensional boron nitride nanoflakes. ACS Appl. Mater. Interfaces 11, 37920 (2019).
91.Seo, J., Kim, Y., Park, W.Y., Son, J.Y., Jeong, C.K., Kim, H., and Kim, W.-H.: Out-of-plane piezoresponse of monolayer MoS2 on plastic substrates enabled by highly uniform and layer-controllable CVD. Appl. Surf. Sci. 487, 1356 (2019).
92.Zhang, Y., Sun, H., and Jeong, C.K.: Biomimetic porifera skeletal structure of lead-free piezocomposite energy harvesters. ACS Appl. Mater. Interfaces 10, 35539 (2018).
93.Karan, S.K., Maiti, S., Paria, S., Maitra, A., Si, S.K., Kim, J.K., and Khatua, B.B.: A new insight towards eggshell membrane as high energy conversion efficient bio-piezoelectric energy harvester. Mater. Today Energy 9, 114 (2018).
94.Ghosh, S.K., and Mandal, D.: Bio-assembled, piezoelectric prawn shell made self-powered wearable sensor for non-invasive physiological signal monitoring. Appl. Phys. Lett 110, 123701 (2017).
95.Maiti, S., Kumar Karan, S., Lee, J., Kumar Mishra, A., Bhusan Khatua, B., and Kon Kim, J.: Bio-waste onion skin as an innovative nature-driven piezoelectric material with high energy conversion efficiency. Nano Energy 42, 282 (2017).
96.Ghosh, S.K. and Mandal, D.: Efficient natural piezoelectric nanogenerator: electricity generation from fish swim bladder. Nano Energy 28, 356 (2016).
97.Sencadas, V., Garvey, C., Mudie, S., Kirkensgaard, J.J.K., Gouadec, G., and Hauser, S.: Electroactive properties of electrospun silk fibroin for energy harvesting applications. Nano Energy 66, 104106 (2019).
98.Maitra, A., Karan, S.K., Paria, S., Das, A.K., Bera, R., Halder, L., Si, S.K., Bera, A., and Khatua, B.B.: Fast charging self-powered wearable and flexible asymmetric supercapacitor power cell with fish swim bladder as an efficient natural bio-piezoelectric separator. Nano Energy 40, 633 (2017).
99.Alam, M.M. and Mandal, D.: Native cellulose microfiber-based hybrid piezoelectric generator for mechanical energy harvesting utility. ACS Appl. Mater. Interfaces 8, 1555 (2016).
100.Karan, S.K., Maiti, S., Kwon, O., Paria, S., Maitra, A., Si, S.K., Kim, Y., Kim, J.K., and Khatua, B.B.: Nature driven spider silk as high energy conversion efficient bio-piezoelectric nanogenerator. Nano Energy 49, 655 (2018).

Toward bioimplantable and biocompatible flexible energy harvesters using piezoelectric ceramic materials

  • Chang Kyu Jeong (a1) (a2) (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.