Skip to main content Accessibility help
×
×
Home

Titania-based electrospun nanofibrous materials: a new model for organic pollutants degradation

  • Xiaohui Wu (a1), Yang Si (a2), Jianyong Yu (a2) and Bin Ding (a1) (a2)

Abstract

Effective degradation of organic pollutants in wastewater is of great importance to the environment and human society. TiO2-based electrospun nanofibrous materials combining the properties of the large specific surface area, high aspect ratio, tunable compositions and structures, as well as easy to recycle, show great promise for the efficient removal of organic pollutants. In this Prospective paper, the recent progress in the degradation of organic water contaminants over visible-light-responsive TiO2-based nanofibrous materials is summarized, with emphasis on the strategies for improving the visible-light photocatalytic activity of TiO2-based nanofibrous materials. Finally, the current challenges and future outlook in this field are discussed.

Copyright

Corresponding author

Address all correspondence to Prof. Bin Ding at binding@dhu.edu.cn

References

Hide All
1.Garcia, S. and Brillas, E.: Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J. Photochem. Photobiol. C, Photochem. 31, 1 (2017).
2.Schwarzenbach, R.P., Egli, T., Hofstetter, T.B., von Gunten, U., and Wehrli, B.: Global water pollution and human health. Annu. Rev. Env. Resour. 35, 109 (2010).
3.Robinson, T., McMullan, G., Marchant, R., and Nigam, P.: Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77, 247 (2001).
4.Loos, R., Locoro, G., Comero, S., Contini, S., Schwesig, D., Werres, F., Balsaa, P., Gans, O., Weiss, S., Blaha, L., Bolchi, M., and Gawlik, B.M.: Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res. 44, 4115 (2010).
5.Khin, M.M., Nair, A.S., Bahu, V.J., Murugan, R., and Ramakrishna, S.: A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5, 8075 (2012).
6.Klavarioti, M., Mantzavinos, D., and Kassinos, D.: Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 35, 402 (2009).
7.Reddy, P.A.K., Reddy, P.V.L., Kwon, E., Kim, K.H., Akter, T., and Kalagara, S.: Recent advances in photocatalytic treatment of pollutants in aqueous media. Environ. Int. 91, 94 (2016).
8.Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S.M., Hamilton, J.W.J., Byrne, J.A., O′Shea, K., Entezari, M.H., and Dionysiou, D.D.: A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 125, 331 (2012).
9.Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X., and He, Y.: An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 79, 128 (2015).
10.Wang, X., Li, Z., Shi, J., and Yu, Y.: One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem. Rev. 114, 9346 (2014).
11.Lee, K., Mazare, A., and Schmuki, P.: One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 114, 9385 (2014).
12.Wang, N., Si, Y., Wang, N., Sun, G., El-Newehy, M., Al-Deyab, S.S., and Ding, B.: Multilevel structured polyacrylonitrile/silica nanofibrous membranes for high-performance air filtration. Sep. Purif. Technol. 126, 44 (2014).
13.Ding, B., Gong, J., Kim, J., and Shiratori, S.: Polyoxometalate nanotubes from layer-by-layer coating and thermal removal of electrospun nanofibres. Nanotechnology 16, 785 (2005).
14.Si, Y., Wang, X., Yan, C., Yang, L., Yu, J., and Ding, B.: Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv. Mater. 28, 9512 (2016).
15.Zhang, X., Li, X., Shao, C., Li, J., Zhang, M., Zhang, P., Wang, K., Lu, N., and Liu, Y.: One-dimensional hierarchical heterostructures of In2S3 nanosheets on electrospun TiO2 nanofibers with enhanced visible photocatalytic activity. J. Hazard. Mater. 260, 892 (2013).
16.Ding, B., Li, C., Fujita, S., and Shiratori, S.: Layer-by-layer self-assembled tubular films containing polyoxometalate on electrospun nanofibers. Colloids Surf. A 284, 257 (2006).
17.Boyer, S.M., Liu, J., Zhang, S., Ehrlich, M.I., McCarthy, D.L., Tong, L., DeCoste, J.B., Bernier, W.E., and Jones, W.E. Jr.: The role of ruthenium photosensitizers in the degradation of phenazopyridine with TiO2 electrospun fibers. J. Photochem. Photobiol. A Chem. 329, 46 (2016).
18.Liu, Z., Miao, Y., Liu, M., Ding, Q., Tjiu, W.W., Cui, X., and Liu, T.: Flexible polyaniline-coated TiO2/SiO2 nanofiber membranes with enhanced visible-light photocatalytic degradation performance. J. Colloid Interface Sci. 424, 49 (2014).
19.Ma, Y., Wang, X., Jia, Y., Chen, X., Han, H., and Li, C.: Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987 (2014).
20.Gopal, M., Chan, W.J.M., and DeJonghe, L.C.: Room temperature synthesis of crystalline metal oxides. J. Mater. Sci. 32, 6001 (1997).
21.Tompsett, G.A., Bowmaker, G.A., Cooney, R.P., Metson, J.B., Rodgers, K.A., and Seakins, J.M.: The Raman spectrum of brookite, TiO2 (Pbca, Z = 8). J. Raman Spectrosc. 26, 57 (1995).
22.Feist, T.P. and Davies, P.K.: The soft chemical synthesis of TiO2 (B) from layered titanates. J. Solid State Chem. 101, 275 (1992).
23.Wang, W., Tadé, M., and Shao, Z.: Nitrogen-doped simple and complex oxides for photocatalysis: a review. Prog. Mater. Sci. 92, 33 (2018).
24.Rajeshwar, K., Osugi, M.E., Chanmanee, W., Chenthamarakshan, C.R., Zanoni, M.V.B., Kajitvichyanukul, P., and Krishnan-Ayer, R.: Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. Photochem. Photobiol. C, Photochem. Rev. 9, 171 (2008).
25.Tachikawa, T., Fujitsuka, M., and Majima, T.: Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts. J. Phys. Chem. C 111, 5259 (2007).
26.Chen, X., Liu, L., Yu, P.Y., and Mao, S.S.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011).
27.Alves, A.K., Berutti, F.A., and Bergmann, C.P.: Visible and UV photocatalytic characterization of Sn-TiO2 electrospun fiber. Catal. Today 208, 7 (2013).
28.Ma, D., Xin, Y., Gao, M., and Wu, J.: Fabrication and photocatalytic properties of cationic and anionic S-doped TiO2 nanofibers by electrospinning. Appl. Catal. B Environ. 147, 49 (2014).
29.Zhang, M., Shao, C., Guo, Z., Zhang, Z., Mu, J., Cao, T., and Liu, Y.: Hierarchical nanostructures of copper(II) phthalocyanine on electrospun TiO2 nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties. ACS Appl. Mater. Interfaces 3, 369 (2011).
30.Baiyila, D., Wang, X., Li, X., Sharileaodu, B., Li, X., Xu, L., Liu, Z., Duan, L., and Liu, J.: Electrospun TiO2 nanofibers integrating space-separated magnetic nanoparticles and heterostructures for recoverable and efficient photocatalyst. J. Mater. Chem. A 2, 12304 (2014).
31.Shang, M., Wang, W., Zhang, L., Sun, S., Wang, L., and Zhou, L.: 3D Bi2WO6/TiO2 hierarchical heterostructure: controllable synthesis and enhanced visible photocatalytic degradation performances. J. Phys. Chem. C 113, 14727 (2009).
32.Zhang, L., Li, Y., Zhang, Q., and Wang, H.: Hierarchical nanostructure of WO3 nanorods on TiO2 nanofibers and the enhanced visible light photocatalytic activity for degradation of organic pollutants. CrystEngComm 15, 5986 (2013).
33.Misra, M., Singh, N., and Gupta, R.K.: Enhanced visible-light-driven photocatalytic activity of Au@Ag core-shell bimetallic nanoparticles immobilized on electrospun TiO2 nanofibers for degradation of organic compounds. Catal. Sci. Technol. 7, 570 (2017).
34.Chen, X. and Mao, S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).
35.Shahini, P., Ashkarran, A.A., Hamidinezhad, H., and Bahari, A.: The role of iron functionalization on the visible-light photocatalytic performance of TiO2 nanofibers suitable for environmental applications. Res. Chem. Intermed. 42, 8273 (2016).
36.Zhang, Z., Shao, C., Zhang, L., Li, X., and Liu, Y.: Electrospun nanofibers of V-doped TiO2 with high photocatalytic activity. J. Colloid Interface Sci. 351, 57 (2010).
37.Ruggieri, F., Camillo, D.D., Maccarone, L., Santucci, S., and Lozzi, L.: Electrospun Cu-, W- and Fe-doped TiO2 nanofibres for photocatalytic degradation of rhodamine 6G. J. Nanopart. Res. 15, 1982 (2013).
38.Worayingyong, A., Sang-urai, S., Smith, M.F., Maensiri, S., and Seraphin, S.: Effects of cerium dopant concentration on structural properties and photocatalytic activity of electrospun Ce-doped TiO2 nanofibers. Appl. Phys. A 117, 1191 (2014).
39.Choi, J., Sudhagar, P., Lakshmipathiraj, P., Lee, J.W., Devadoss, A., Lee, S., Song, T., Hong, S., Eito, S., Terashima, C., Han, T.H., Kang, J.K., Fujishima, A., Kang, Y.S., and Paik, U.: Three-dimensional Gd-doped TiO2 fibrous photoelectrodes for efficient visible light-driven photocatalytic performance. RSC Adv. 4, 11750 (2014).
40.Lee, D.Y., Kim, B.Y., Cho, N.I., and Oh, Y.J.: Electrospun Er3+-TiO2 nanofibrous films as visible light induced photocatalysts. Curr. Appl. Phys. 11, S324 (2011).
41.Xu, J., Wang, W., Shang, M., Gao, E., Zhang, Z., and Ren, J.: Electrospun nanofibers of Bi-doped TiO2 with high photocatalytic activity under visible light irradiation. J. Hazard. Mater. 196, 426 (2011).
42.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).
43.Camillo, D.D., Ruggieri, F., Santucci, S., and Lozzi, L.: N-doped TiO2 nanofibers deposited by electrospinning. J. Phys. Chem. C 116, 18427 (2012).
44.Dai, Y.R. and Yin, L.F.: Enhancement of photocatalytic activity for electrospun C@Ti/anatase fibers by lattice distortion under anisotropic stress. Catal. Sci. Technol. 4, 456 (2014).
45.Li, H., Zhang, W., Huang, S., and Pan, W.: Enhanced visible-light-driven photocatalysis of surface nitrided electrospun TiO2 nanofibers. Nanoscale 4, 801 (2012).
46.Yu, Q., Jin, X., Li, S., Wang, L., and Liang, K.: The photocatalytic properties of Fe3+ and N co-doped TiO2 micro/nanofiber film for dye waste water decomposition. Adv. Mater. Res. 356–360, 853 (2012).
47.Zhang, Q., Zhou, S., Fu, S.F., and Wang, X.Z.: Tetranitrophthalocyanine zinc/TiO2 nanofibers organic-inorganic heterostructures with enhanced visible photocatalytic activity. Nano 12, 1750117 (2017).
48.Su, C., Shao, C., and Liu, Y.: Electrospun nanofibers of TiO2/CdS heteroarchitectures with enhanced photocatalytic activity by visible light. J. Colloid Interface Sci. 359, 220 (2011).
49.Li, H., Zhu, Y., Cao, H., Yang, X., and Li, C.: Preparation and characterization of photocatalytic carbon dots-sensitized electrospun titania nanostructured fiber. Mater. Res. Bull. 48, 232 (2013).
50.Likodimos, V.: Photonic crystal-assisted visible light activated TiO2 photocatalysis. Appl. Catal. B Environ. 230, 269 (2018).
51.Yu, H., Shi, R., Zhao, Y., Waterhouse, G.I.N., Wu, L.Z., Tung, C.H., and Zhang, T.: Smart utilization of carbon dots in semiconductor photocatalysis. Adv. Mater. 28, 9454 (2016).
52.Hu, S., Wei, Z., Chang, Q., Trinchi, A., and Yang, J.: A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity. Appl. Surf. Sci. 378, 402 (2016).
53.Wan, H., Wang, N., Yang, J., Si, Y., Chen, K., Ding, B., Sun, G., El-Newehy, M., Al-Deyab, S.S., and Yu, J.: Hierarchically structured polysulfone/titania fibrous membranes with enhanced air filtration performance. J. Colloid Interface Sci. 417, 18 (2014).
54.Mu, J., Chen, B., Zhang, M., Guo, Z., Zhang, P., Zhang, Z., Sun, Y., Shao, C., and Liu, Y.: Enhancement of the visible-light photocatalytic activity of In2O3-TiO2 nanofiber heteroarchitectures. ACS Appl. Mater. Interfaces 4, 424 (2012).
55.Li, X., Lin, H., Chen, X., Niu, H., Liu, J., Zhang, T., and Qu, F.: Dendritic α-Fe2O3/TiO2 nanocomposites with improved visible light photocatalytic activity. Phys. Chem. Chem. Phys. 18, 9176 (2016).
56.Tian, F., Hou, D., Hu, F., Xie, K., Qiao, X., and Li, D.: Porous TiO2 nanofibers decorated CdS nanoparticles by SILAR method for enhanced visible-light-driven photocatalytic activity. Appl. Surf. Sci. 391, 295 (2017).
57.Han, C., Wang, Y., Lei, Y., Wang, B., Wu, N., Shi, Q., and Li, Q.: In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 8, 1199 (2015).
58.Su, C., Liu, L., Zhang, M., Zhang, Y., and Shao, C.: Fabrication of Ag/TiO2 nanoheterostructures with visible light photocatalytic function via a solvothermal approach. CrystEngComm 14, 3989 (2012).
59.Yang, Z., Lu, J., Ye, W., Yu, C., and Chang, Y.: Preparation of Pt/TiO2 hollow nanofibers with highly visible light photocatalytic activity. Appl. Surf. Sci. 392, 472 (2017).
60.Shahini, P. and Ashkarran, A.A.: Immobilization of plasmonic Ag-Au NPs on the TiO2 nanofibers as an efficient visible-light photocatalyst. Colloids Surf. A 537, 155 (2018).
61.Wang, Y., Liu, L., Huang, Y., Li, X., Cao, X., Xu, L., Meng, C., Wang, Z., and Zhu, W.: Ag0.35V2O5/TiO2 branched nanoheterostructures: facile fabrication and efficient visible light photocatalytic activity. Mater. Lett. 128, 358 (2014).
62.Li, B., Hao, Y., Zhang, B., Shao, X., and Hu, L.: A multifunctional noble-metal-free catalyst of CuO/TiO2 hybrid nanofiber. Appl. Catal. A Gen. 531, 1 (2017).
63.Li, X., Chen, X., Niu, H., Han, X., Zhang, T., Liu, J., Lin, H., and Qu, F.: The synthesis of CdS/TiO2 hetero-nanofibers with enhanced visible photocatalytic activity. J. Colloid Interface Sci. 452, 89 (2015).
64.Zhang, L., Zhang, Q., Xie, H., Guo, J., Lyu, H., Li, Y., Sun, Z., Wang, H., and Guo, Z.: Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis. Appl. Catal. B Environ. 201, 470 (2017).
65.Liao, C., Ma, Z., Dong, G., and Qiu, J.: BiOI nanosheets decorated TiO2 nanofiber: tailoring water purification performance of photocatalyst in structural and photo-responsivity aspects. Appl. Surf. Sci. 314, 481 (2014).
66.Wang, Y., Su, Y.R., Qiao, L., Liu, L.X., Su, Q., Zhu, C.Q., and Liu, X.Q.: Synthesis of one-dimensional TiO2/V2O5 branched heterostructures and their visible light photocatalytic activity towards Rhodamine B. Nanotechnology 22, 225702 (2011).
67.Lv, Y., Xu, Z., Irie, S., and Nakane, K.: Fabrication of PdOx loaded highly mesoporous WO3/TiO2 hybrid nanofibers by stepwise pore-generation for enhanced photocatalytic performance. Mol. Catal. 438, 173 (2017).
68.Wang, Y., Zhang, J., Liu, L., Zhu, C., Liu, X., and Su, Q.: Visible light photocatalysis of V2O5/TiO2 nanoheterostructures prepared via electrospinning. Mater. Lett. 75, 95 (2012).
69.Yang, G., Zhang, Q., Chang, W., and Yan, W.: Fabrication of Cd1−xZnxS/TiO2 heterostructures with enhanced photocatalytic activity. J. Alloy. Compd. 580, 29 (2013).
70.Chang, W., Ren, X., Yang, G., Yan, W., and Sun, R.: Synthesis and photocatalytic activity of ZnxCd1−xS/TiO2 heterostructures nanofibre prepared by combining electrospinning and hydrothermal method. S. Afr. J. Chem. 68, 138 (2015).
71.Zhang, Z., Shao, C., Li, X., Sun, Y., Zhang, M., Mu, J., Zhang, P., Guo, Z., and Liu, Y.: Hierarchical assembly of ultrathin hexagonal SnS2 nanosheets onto electrospun TiO2 nanofibers: enhanced photocatalytic activity based on photoinduced interfacial charge transfer. Nanoscale 5, 606 (2013).
72.Kongkanand, A., Domínguez, R.M., and Kamat, P.V.: Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Lett. 7, 676 (2007).
73.Zhao, H., Liu, X., Cao, Z., Zhan, Y., Shi, X., Yang, Y., Zhou, J., and Xu, J.: Adsorption behavior and mechanism of chloramphenicols sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes. J. Hazard. Mater. 310, 235 (2016).
74.Zhang, P., Shao, C., Zhang, Z., Zhang, M., Mu, J., Guo, Z., and Liu, Y.: TiO2@carbon core/shell nanofibers: controllable preparation and enhanced visible photocatalytic properties. Nanoscale 3, 2943 (2011).
75.Zhang, P., Shao, C., Zhang, Z., Zhang, M., Mu, J., Guo, Z., Sun, Y., and Liu, Y.: Core/shell nanofibers of TiO2@carbon embedded by Ag nanoparticles with enhanced visible photocatalytic activity. J. Mater. Chem. 21, 17746 (2011).
76.Zhao, Z., Li, Z., and Zou, Z.: Electronic structure and optical properties of monoclinic clinobisvanite BiVO4. Phys. Chem. Chem. Phys. 13, 4746 (2011).
77.Noguchi, Y., Goto, T., Miyayama, M., Hoshikawa, A., and Kamiyama, T.: Ferroelectric distortion and electronic structure in Bi4Ti3O12. J. Electroceram. 21, 49 (2008).
78.Luo, S., Chen, J., Huang, Z., Liu, C., and Fang, M.: Controllable synthesis of titania-supported bismuth oxyiodide heterostructured nanofibers with highly exposed (110) bismuth oxyiodide facets for enhanced photocatalytic activity. ChemCatChem 8, 3780 (2016).
79.Wang, Y., Sunarso, J., Zhao, B., Ge, C., and Chen, G.: One-dimensional BiOBr nanosheets/TiO2 nanofibers composite: controllable synthesis and enhanced visible photocatalytic activity. Ceram. Int. 43, 15769 (2017).
80.Li, Y.-J., Cao, T.-P., Shao, C.-L., and Wang, C.-H.: Preparation and photocatalytic properties of γ-Bi2O3/TiO2 composite fibers. J. Inorg. Mater. 27, 687 (2012).
81.Cao, T., Li, Y., Wang, C., Zhang, Z., Zhang, M., Shao, C., and Liu, Y.: Bi4Ti3O12 nanosheets/TiO2 submicron fibers heterostructures: in situ fabrication and high visible light photocatalytic activity. J. Mater. Chem. 21, 6922 (2011).
82.Zhou, D., Zhang, H., Tu, Y., Tian, Y., Cai, Y., Hu, Z., and Zhu, X.: In situ fabrication of Bi2Ti2O7/TiO2 heterostructure submicron fibers for enhanced photocatalytic activity. Nanoscale Res. Lett. 11, 193 (2016).
83.Guo, Z., Li, P., Che, H., Wang, G., Wu, C., Zhang, X., and Mu, J.: One-dimensional spindle-like BiVO4/TiO2 nanofibers heterojunction nanocomposites with enhanced visible light photocatalytic activity. Ceram. Int. 42, 4517 (2016).
84.Zhang, M., Shao, C., Mu, J., Zhang, Z., Guo, Z., Zhang, P., and Liu, Y.: One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity. CrystEngComm 14, 605 (2012).
85.Yang, Y., Liu, Y., Wei, J., Pan, C., Xiong, R., and Shi, J.: Electrospun nanofibers of p-type BiFeO3/n-type TiO2 hetero-junctions with enhanced visible-light photocatalytic activity. RSC Adv. 4, 31941 (2014).
86.Zhang, R., Wang, X., Song, J., Si, Y., Zhuang, X., Yu, J., and Ding, B.: In situ synthesis of flexible hierarchical TiO2 nanofibrous membranes with enhanced photocatalytic activity. J. Mater. Chem. A 3, 22136 (2015).
87.Kokubo, H., Ding, B., Naka, T., Tsuchihira, H., and Shiratori, S.: Multi-core cable-like TiO2 nanofibrous membranes for dye-sensitized solar cells. Nanotechnology 18, 165604 (2007).
88.Kanehata, M., Ding, B., and Shiratori, S.: Nanoporous ultra-high specific surface inorganic fibres. Nanotechnology 18, 315602 (2007).
89.Zhang, Y., Liu, S., Xiu, Z., Lu, Q., Sun, H., and Liu, G.: TiO2/BiOI heterostructured nanofibers: electrospinning-solvothermal two-step synthesis and visible-light photocatalytic performance investigation. J. Nanopart. Res. 16, 2375 (2014).
90.Xie, J., Yang, Y., He, H., Cheng, D., Mao, M., Jiang, Q., Song, L., and Xiong, J.: Facile synthesis of hierarchical Ag3PO4/TiO2 nanofiber heterostructures with highly enhanced visible light photocatalytic properties. Appl. Surf. Sci. 355, 921 (2015).
91.Su, Z., Li, H., Chen, P., Hu, S., and Yan, Y.: Novel heterostructured InN/TiO2 submicron fibers designed for high performance visible-light-driven photocatalysis. Catal. Sci. Technol. 7, 5105 (2017).
92.Jiang, L., Yuan, X., Pan, Y., Liang, J., Zeng, G., Wu, Z., and Wang, H.: Doping of graphitic carbon nitride for photocatalysis: a review. Appl. Catal. B, Environ. 217, 388 (2017).
93.Adhikari, S.P., Awasthi, G.P., Kim, H.J., Park, C.H., and Kim, C.S.: Electrospinning directly synthesized porous TiO2 nanofibers modified by graphitic carbon nitride sheets for enhanced photocatalytic degradation activity under solar light irradiation. Langmuir 32, 6163 (2016).
94.Wang, C., Hu, L., Chai, B., Yan, J., and Li, J.: Enhanced photocatalytic activity of electrospun nanofibrous TiO2/g-C3N4 heterojunction photocatalyst under simulated solar light. Appl. Surf. Sci. 430, 243 (2018).
95.Zhou, X., Shao, C., Li, X., Wang, X., Guo, X., and Liu, Y.: Three dimensional hierarchical heterostructures of g-C3N4 nanosheets/TiO2 nanofibers: controllable growth via gas-solid reaction and enhanced photocatalytic activity under visible light. J. Hazard. Mater. 344, 113 (2018).
96.Song, J., Wang, X., Yan, J., Yu, J., Sun, G., and Ding, B.: Soft Zr-doped TiO2 nanofibrous membranes with enhanced photocatalytic activity for water purification. Sci. Rep. 7, 1636 (2017).
97.Shan, H., Wang, X., Shi, F., Yan, J., Yu, J., and Ding, B.: Hierarchical porous structured SiO2/SnO2 nanofibrous membrane with superb flexibility for molecular filtration. ACS Appl. Mater. Interfaces 9, 18966 (2017).
98.Si, Y., Mao, X., Zheng, H., Yu, J., and Ding, B.: Silica nanofibrous membranes with ultra-softness and enhanced tensile strength for thermal insulation. RSC Adv. 5, 6027 (2015).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed