Skip to main content Accessibility help
×
Home

Three-dimensional-printed molds and materials for injection molding and rapid tooling applications

  • John Ryan C. Dizon (a1) (a2), Arnaldo D. Valino (a1) (a3), Lucio R. Souza (a1), Alejandro H. Espera (a1) (a4) (a5), Qiyi Chen (a1) and Rigoberto C. Advincula (a1)...

Abstract

This Prospective covers an overview of the injection molding process and the importance of mold design and tooling considerations, important material requirements and thermal properties for molds, polymer material requirements for injection molding, mold flow analysis, and the promise of using the 3D printing process for mold fabrication. The second part demonstrates the injection molding process using 3D-printed polymer molds and its suitability for low-run productions. 3D-printed molds using stereolithography and fused filament fabrication have been injected with polylactic acid, and the quality of the injected parts was assessed in terms of dimensional accuracy and the damage mechanisms during fabrication.

Copyright

Corresponding author

Address all correspondence to Rigoberto C. Advincula at rca41@case.edu

References

Hide All
3.Kobryn, P.A., Ontko, N.R., Perkins, L.P., and Tiley, J.S.: Additive Manufacturing of Aerospace Alloys for Aircraft Structures. Air Force Research Lab Wright-Patterson AFB OH Materials and Manufacturing Directorate, 2006.
4.Le, V.T., Paris, H., and Mandil, G.: Process planning for combined additive and subtractive manufacturing technologies in a remanufacturing context. J. Manuf. Syst. 44, 243 (2017).
5.Dizon, J.R.C., Espera, A.H., Chen, Q., and Advincula, R.: Mechanical characterization of 3D-printed polymers. Addit. Manuf. 20, 44 (2018).
6.Stratasys, 3D Printing and Dental Implants: http://www.stratasys.com/resources/white-papers/3d-printing-and-dental-implants (accessed June 2017).
7.Formlabs: https://3d.formlabs.com/injection-molding/ (accessed May 2019).
8.Rosato, D.V. and Rosato, M.G.: Injection Molding Handbook, 3rd ed. 23 (Springer Science+Business Media, New York, 2000).
10.Khan, R.M. and Acharya, G.: Plastic injection molding process and its aspects for quality: a review. Eur. J. Adv. Eng. Technol. 3, 6670 (2016).
11.Frizelle, W.G.: Injection molding technology. In Applied Plastics Engineering Handbook, 2nd ed. Processing, Materials, and Applications, Plastics Design Library, edited by Myer Kutz (William Andrew/Elsevier, Norwich, NY, 2017) pp. 191202.
12.Rizvi, S.J.A.: Effect of injection molding parameters on crystallinity and mechanical properties of isotactic polypropylene. Int. J. Plast. Technol. 21, 404426 (2017).
13.Rogers, T.: Everything you need to know about injection molding. https://www.creativemechanisms.com/blog/everything-you-need-to-know-about-injection-molding (accessed April 2019).
15.Johnson, P.K.: Metal injection molding trends report. Int. J. Powder Metall. 55, 11 (2019).
16.Greener, J. and Weimberg-Freidl, R.: Injection molding for microfluidics applications. Precision Inject. Mold 169, 169175 (1990).
17.Liou, A.C. and Chen, R.H.: Injection molding of polymer micro- and sub-micron structures with high-aspect ratios. Int. J. Adv. Manuf. Technol. 28, 1097 (2006).
19.Agrawal, A.R., Pandelidis, I.O., and Pecht, M.: Injection molding process control: a review. Polym. Eng. Sci. 27, 1 (1987).
20.Malloy, R.A.: Prototyping and Experimental Stress Analysis, Plastic Part Design for Injection Molding: An Introduction (Hanser Publishers, Munich; New York; Cincinnati, 1994).
21.Park, H. S. and Dang, X.-P.: Technology for improving productivity and quality of injection molding. In DAAAM International Scientific Book, edited by Katalinik, Branko (DAAAM International Publishing, DAAAM International Vienna DAAAM scriptorium GmbH, 2018), pp. 185194.
22.Sachs, E., Wylonis, E., Allen, S., Cima, M., and Guo, H.: Production of injection molding tooling with conformal cooling channels using the three dimensional printing process. Polym. Eng. Sci. 40, 1232 (2000).
23.Jansen, K.M.B., Van Dijk, D.J., and Husselman, M.H.: Effect of processing conditions on shrinkage in injection molding. Polym. Eng. Sci. 38, 838 (1998).
24.Jansen, K.M.B. and Titomanlio, G.: Effect of pressure history on shrinkage and residual stresses: injection molding with constrained shrinkage. Polym. Eng. Sci. 36, 2029 (1996).
27.Tremblay, T.: Injection Molding Part Design for Dummies (Proto Labs, John Wiley & Sons, New York, 2012).
28.Kazmer, D. O.: Injection Mold Design Engineering (Hanser, Munich, 2007).
29.Adhikari, A., Bourgade, T., and Asundi, A.: Residual stress measurement for injection molded components. Theor. Appl. Mech. Lett. 6, 152 (2016).
30.Kim, B.K. and Min, J.W.: Residual stress distributions and their influence onpost-manufacturing deformation of injection-molded plastic parts. J. Mater. Process. Technol. 245, 215 (2017).
31.Guevara-Morales, A. and Figueroa-Lopez, U.: Residual stresses in injection molded products. J. Mater. Sci. 49, 4399 (2014).
32.Lee, B.H. and Kim, B.H.: Variation of part wall thicknesses to reduce warpage of injection-molded part: robust design against process variability. Polym. Plast. Technol. Eng. 36, 791 (1997).
33.Bernhadt, E. C.: CAE-Computer Aided Engineering for Injection Molding (Hanser Publishers, Munich; New York: Cincinnati, 1983).
34.Masato, D., Rathore, J., Sorgato, M., Carmignato, S., and Lucchetta, G.: Analysis of the shrinkage of injection-molded fiber-reinforced thin-wall parts. Mater. Des. 132, 496 (2017).
35.Hazenbosch, S.: How to design parts for injection molding. https://www.3dhubs.com/knowledge-base/how-design-parts-injection-molding.
36.Pandelidis, I. and Zou, Q.: Optimization of injection molding design. Part I: gate location optimization. Polym. Eng. Sci 30, 873882 (1990).
37.Kerstra, R.: TOOLING: how to select the right tool steel for mold cavities. Plastics Technol (2016). https://www.ptonline.com/articles/tooling-how-to-select-the-right-tool-steel-for-mold-cavities.
42.Shelton, S.M.: Thermal conductivity of some irons and steels over the temperature range of 100 to 500C. Part Bur. Stand. J. Res. 12, 441450 (1934).
43.Callister, W.D. Jr.: Materials Science and Engineering: An Introduction, 7th ed. (John Wiley & Sons, Inc., New York, NY, 2007).
44.Goodship, V., Middleton, B., and Cherrington, R.: Design and manufacture of plastic components for multifunctionality. In Structural Composites, Injection Molding, and 3D Printing, Chapter 4: Injection Molding of Thermoplastics, 1st ed. (William Andrew/Elsevier, Norwich, NY, 2015) pp. 103170.
46.ASTM F2792: Standard terminology for additive manufacturing technologies (No. F2792-12a). ASTM Int. 24 (2013). doi:10.1520/F2792-12A.2.
47.Sai, P.C. and Yeole, S.: Fused deposition modeling: insights. Int. Conf. Adv. Des. Manuf. 13451350 (2014).
48.De Leon, A.C., Chen, Q., Palaganas, N.B., Palaganas, J.O., Manapat, J., and Advincula, R.C.: High performance polymer nanocomposites for additive manufacturing applications. React. Funct. Polym. 103, 141 (2016).
49.Dizon, J.R.C., Chen, Q., Valino, A.D., and Advincula, R.C.: Thermo-mechanical and swelling properties of three-dimensional-printed poly (ethylene glycol) diacrylate/silica nanocomposites. MRS Commun. 9, 209217 (2019).
50.Afonso, D., Pires, L., de Sousa, R.A., and Torcato, R.: Direct rapid tooling for polymer processing using sheet metal tools. Proc. Manuf. 13, 102108 (2017).
51.Rosochowski, A., and Matuszak, A.: Rapid tooling: the state of the art. J. Mater. Process Technol. 106, 191198 (2000).
52.Jayanthi, S., Bokuf, B., Mcconnell, R., Speer, R.J., and Fussell, P.S.: Stereolithographic injection molds for direct tooling. In Solid Freeform Symposium (The University of Texas at Austin, Texas Scholar Works, University of Texas Libraries, Austin, TX, 1997) pp. 275–286.
53.Chen, Y.M. and Liu, J.J.: Cost-effective design for injection molding. Robot. CIM-Int. Manuf. 15, 121 (1999).
54.Wang, H.S., Wang, Y.N., and Wang, Y.C.: Cost estimation of plastic injection molding parts through integration of PSO and BP neural network. Expert Syst. Appl. 40, 418428 (2013).
55.Rosato, D.V. and Rosato, M.G.: Injection Molding Handbook (Springer Science & Business Media, Berlin/Heidelberg, Germany, 2012).
56.Dewhurst, P. and Boothroyd, G.: Early cost estimating in product design. J. Manuf. Syst. 7, 183191 (1988).
57.Snelling, D., Li, Q., Meisel, N., Williams, C.B., Batra, R.C., and Druschitz, A.P.: Lightweight metal cellular structures fabricated via 3D printing of sand cast molds. Adv. Eng. Mater. 17, 923932 (2015).
58.Bak, D.: Rapid prototyping or rapid production? 3D printing processes move industry towards the latter. Assembly Autom. 23, 340345 (2003).
59.Chimento, J., Jason Highsmith, M.J., and Crane, N.: 3D printed tooling for thermoforming of medical devices. Rapid Prototyp. J. 17, 387392 (2011).
60.Hwang, Y., Paydar, O.H., and Candler, R.N.: 3D printed molds for non-planar PDMS microfluidic channels. Sensors Actuat. A: Phys. 226, 137142 (2015).
61.León-Cabezas, M.A., Martínez-García, A., and Varela-Gandía, F.J.: Innovative advances in additive manufactured moulds for short plastic injection series. Proc. Manuf. 13, 732737 (2017).
62.Ma, S., Gibson, I., Balaji, G., and Hu, Q.J.: Development of epoxy matrix composites for rapid tooling applications. J. Mater. Process. Technol. 192–193, 7582 (2007).
63.Rahmati, S. and Dickens, P.: Rapid tooling analysis of Stereolithography injection mould tooling. Int. J. Mach. Tools Manuf. 47, 740747 (2007).
65.Vojnová, E.: The benefits of a conforming cooling systems the molds in injection moulding process. Proc. Eng. 149, 535543 (2016).
66.Chang, K-.H.: Chapter 15-product cost estimating. In e-Design, edited by Chang, K.-H. (Academic Press, Boston, MA, 2015), pp. 787844.
67.Noble, J., Walczak, K., and Dornfeld, D.: Rapid tooling injection molded prototypes: a case study in artificial photosynthesis technology. Proc. CIRP 14, 251256 (2014).
70.Sabic: https://www.sabic.com (accessed May 2019).
72.Dzulkipli, A.A. and Azuddin, M.: Study of the effects of injection molding parameter on weld line formation. Proc. Eng. 184, 663672 (2017).
73.Guo, W., Mao, H., Li, B., and Guo, X.: Influence of processing parameters on molding process in microcellular injection molding. Proc. Eng. 81, 670675 (2014).
74.Azaman, M.D., Sapuan, S.M., Sulaiman, S., Zainudin, E.S., and Khalina, A.: Shrinkages and warpage in the processability of wood-filled polypropylene composite thin-walled parts formed by injection molding. Mater. Des. 52, 10181026 (2013).
75.Matweb: Nylene PA6/6 Glass Filled 5113 HS Nylon 6/6 http://www.matweb.com/.
76.Covestro: Covestro Resins https://solutions.covestro.com.
77.Tang, S.H., Tan, Y.J., Sapuan, S.M., Sulaiman, S., Ismail, N., and Samin, R.: The use of Taguchi method in the design of plastic injection mould for reducing warpage. J. Mater. Process. Technol. 182, 418426 (2007).
78.Sastri, V. R.:Commodity thermoplastics. In Plastics in Medical Devices (William Andrew/Elsevier, Norwich, NY, 2010) pp. 73119.
79.Sastri, V. R.: Materials used in medical devices. In Plastics in Medical Devices (William Andrew/Elsevier, Norwich, NY, 2014) pp. 1931.
80.Maddah, H.: Polypropylene as a promising plastic: a review. Am. J. Polym. Sci. 6, 111 (2016). doi: 10.5923/j.ajps.20160601.01.
81.Pye, A.: High performance engineering plastics. Mater. Des. 3, 407409 (1982).
82.Polychronopoulos, N.D. and Vlachopoulos, J.: Functional Polymers. Acta Mater. 48, 253262 (2019).
83.John Vlachopoulos, D. S.: The role of rheology in polymer extrusion, 2003. https://www.researchgate.net/publication/266472193_The_Role_of_Rheology_in_Polymer_Extrusion.
84.Imihezri, S., Shaharuddin, S., and Salit, M.S.: A review of the effect of moulding parameters on the performance. Turk. J. Eng. Environ. Sci. 30, 2334 (2006).
85.Jahan, S.A., Wu, T., Zhang, Y., El-Mounayri, H., Tovar, A., Zhang, J., Acheson, D., Nalim, R., Guo, X., and Lee, W.H.: Implementation of conformal cooling & topology optimization in 3D printed stainless steel porous structure injection molds. Proc. Manuf. 5, 901915 (2016).
86.Hassan, H., Regnier, N., Le Bot, C., and Defaye, G.: 3D study of cooling system effect on the heat transfer during polymer injection molding. Int. J. Therm. Sci. 49, 161169 (2010).
87.Ozcelik, B., Kuram, E., and Topal, M.M.: Investigation the effects of obstacle geometries and injection molding parameters on weld line strength using experimental and finite element methods in plastic injection molding. Int. Commun. Heat Mass Transf. 39, 275281 (2012).
88.Bralla, J.: Design for Manufacturability Handbook (McGraw-Hill Handbooks), 2nd ed (McGraw-Hill Education, New York, 1998).
91.Singh, G. and Verma, A.: A brief review on injection moulding manufacturing process. Mater. Today Proc. 4, 14231433 (2017).
92.Chen, Z. and Turng, L.S.: A review of current developments in process and quality control for injection molding. Adv. Polym. Techn. 24, 165182 (2005). https://doi.org/10.1002/adv.20046.
93.Amer, Y., Moayyedian, M., Hajiabolhasani, Z., and Moayyedian, L.: Reducing warpage in injection moulding processes using Taguchi Method Approach: ANOVA. In Proceedings of the IASTED International Conference on Engineering and Applied Science (EAS) (International Association of Science and Technology for Development, Colombo, Sri Lanka, 2012). doi:10.2316/P.2012.785-089.
94.Tang, S.H., Kong, Y.M., Sapuan, S.M., Samin, R., and Sulaiman, S.: Design and thermal analysis of plastic injection mould. J. Mater. Process. Technol. 171, 259267 (2006).
95.Samson Teklehaimanot, Simulation and Design of a plastic injection Mold: A Joint mold for credit card and USB holder: https://www.theseus.fi/bitstream/handle/10024/41114/Samson%20Teklehaimanot%20Final%20Thesis.pdf
98.Quan, Z., Wu, A., Keefe, M., Qin, X., Yu, J., Suhr, J., Byun, J.H., Kim, B.S., and Chou, T.W.: Additive manufacturing of multi-directional preforms for composites:opportunities and challenges. Mater. Today 18, 503512 (2015).
99.Espera, A. H., Dizon, J. R. C., Chen, Q., and Advincula, R. C.: 3D-printing and advanced manufacturing for electronics. Prog. Addit. Manuf 4, 245267 (2019).
100.Chen, Q., Mangadlao, J. D., Wallat, J., De Leon, A., Pokorski, J.K., and Advincula, R.C.: 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: anisotropic properties. ACS Appl. Mater. Interfaces 9, 40154023 (2016). https://doi.org/10.1021/acsami.6b11793.

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Dizon et al. supplementary material
Tables S1-S3

 Word (20 KB)
20 KB

Three-dimensional-printed molds and materials for injection molding and rapid tooling applications

  • John Ryan C. Dizon (a1) (a2), Arnaldo D. Valino (a1) (a3), Lucio R. Souza (a1), Alejandro H. Espera (a1) (a4) (a5), Qiyi Chen (a1) and Rigoberto C. Advincula (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.