Skip to main content Accessibility help
×
Home

Study of indium tin oxide–MoS2 interface by atom probe tomography

  • Manuel Ramos (a1) (a2), John Nogan (a3), Torben Boll (a2) (a4), Sandra Kauffmann-Weiss (a2), Claudia A. Rodriguez-Gonzalez (a1), Jose L. Enriquez-Carrejo (a1) and Martin Heilmaier (a2)...

Abstract

The molybdenum disulfide (MoS2) and indium tin oxide (ITO) interface were studied by atom probe tomography (APT). Raman spectroscopy, scanning electron microscopy, and grazing-incidence x-ray diffraction measurements were performed as complementary characterization. Results confirm that nanowires plated shape with the 〈110〉-orientation are aligned perpendicular to the ITO film with principal reflections at (002), (100), (101), (201), and Raman spectroscopy vibrational modes at E12g at 378 cm−1 and A1g at 407 cm−1 correspond to 2H-MoS2. APT reveals MoS+2, MoS+3 as predominant evaporated molecular ions on the sample, indicating no significant diffusion/segregation of Mo or S species within the ITO layer.

Copyright

Corresponding author

Address all correspondence to Manuel Ramos at manuel.ramos@uacj.mx

References

Hide All
1.Kumar Singha, A., Kumar, P., Late, D.J., Kumar, A., Patel, S., and Singh, J.: 2D layered transition metal dichalcogenides (MoS2): synthesis, applications and theoretical aspects. Appl. Mater. Today 13, 242270 (2018).
2.Li, X. and Zhu, H.: Two-dimensional MoS2: properties, preparation, and applications. J. Materiomics 1, 3344 (2015).
3.The Nobel Prize in Chemistry 1954. NobelPrize.org. Nobel Media AB 2018. Tue. 11 Dec 2018.
4.Dickinson, R.G. and Pauling, L.: The crystal structure of molybdenite. J. Am. Chem. Soc. 45, 14661471 (1923).
5.Ramos, M.A., Chianelli, R., Enríquez-Carrejo, J.L., Gonzalez, G.A., and Berhault, G.: Metallic states by angular dependence in 2H-MoS2 slabs. Comp. Mater. Sci. 84, 1822 (2014).
6.Ramos, M., Galindo-Hernández, F., Arslan, I., Sanders, T., and Domínguez, J.M.: Electron tomography and fractal aspects of MoS2 and MoS2/Co spheres. Sci. Rep. 7, 12322.
7.Perea-López, N., Lin, Z., Pradhan, N.R., Iñiguez-Rábago, A., Elías, A.L., McCreary, A., Lou, J., Ajayan, P.M., Terrones, H., Balicas, L., and Terrones, M.: CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage. 2D Mater. 1, 011004 (2014).
8.Chianelli, R.R., Ruppert, A.F., José-Yacamán, M., and Váquez-Zavala, A.: HREM studies of layered transition metal sulfide catalytic materials. Catal. Today 23, 269281 (1995).
9.Garcia, A., Raya, A.M., Mariscal, M.M., Esparza, R., Herrera, M., Molina, S.I., Scavello, G., Galindo, P.L., José-Yacamán, M., and Ponce, A.: Analysis of electron beam damage of exfoliated MoS2 sheets and quantitative HAADF-STEM imaging. Ultramicroscopy 146, 3338 (2014).
10.Wu, R.J., Odlyzko, M.L., and Andre Mkhoyan, K.: Determining the thickness of atomically thin MoS2 and WS2 in the TEM. Ultramicroscopy 147, 820 (2014).
11.Egerton, R.F., McLeod, R., Wang, F., and Malac, M.: Basic questions related to electron-induced sputtering in the TEM. Ultramicroscopy 110, 991997 (2010).
12.Kong, D., Wang, H., Cha, J.J., Pasta, M., Koski, K.J., Yao, J., and Cui, Y.: Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 13, 13411347 (2013).
13.Singh, H., Mutyala, K.C., Evans, R.D., and Doll, G.L.: An atom probe tomography investigation of Ti–MoS2 and MoS2–Sb2O3–Au films. J. Mater. Res. 32, 17101717 (2017).
14.Dyck, O., Leonard, D.N., Edge, L.F., Jackson, C.A., Pritchett, E.J., Deelman, P.W., and Poplawsky, J.D.: Accurate quantification of Si/SiGe interface profiles via atom probe tomography. Adv. Mater. Interfaces 4, 1700622 (2017).
15.Szász, J., Seils, S., Klotz, D., Störmer, H., Heilmaier, M., Gerthsen, D., Yokokawa, H., and Ivers-Tiffée, E.: High-resolution studies on nanoscaled Ni/YSZ anodes. Chem. Mater. 29, 51135123 (2017).
16.Kim, H. and Gilmore, C.M.: Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. J. Appl. Phys. 86, 64516461 (1999).
17.Betz, U., Kharrazi Olsson, M., Marthy, J., Escolá, M.F., and Atamny, F.: Thin films engineering of indium tin oxide: large area flat panel displays application. Surf. Coat. Technol. 200, 57515759 (2006).
18.Qiao, S., Zhang, B., Feng, K., Cong, R., Yu, W., Fu, G., and Wang, S.: Large lateral photovoltage observed in MoS2 thickness-modulated ITO/MoS2/p-Si heterojunctions. ACS Appl. Mater. Interf. 9, 1837718387 (2017).
19.Marikkannan, M., Subramanian, M., Mayand, J., Tanemura, M., Vishnukanthan, V., and Pearce, J.M.: Effect of ambient combinations of argon, oxygen, and hydrogen on the properties of DC magnetron sputtered indium tin oxide films. AIP Adv. 5, 017128 (2015).
20.Bogdanowicz, J., Kumara, A., Fleischmann, C., Gilbert, M., Houard, J., Vella, A., and Vandervorst, W.: Laser-assisted atom probe tomography of semiconductors: the impact of the focused-ion beam specimen preparation. Ultramicroscopy 188, 1923 (2018).
21.Ramos, M., Nogan, J., Ortíz-Díaz, M., Enriquez-Carrejo, J.L., Rodríguez-González, C.A., Mireles-Jr-Garcia, J., Ornelas, C., and Hurtado-Macias, A.: Mechanical properties of RF-sputtering MoS2 thin films. Surf. Topogr.: Metrol. Prop. 5, 025003 (2017).
22.Lince, J.R. and Fleischauer, P.D.: Crystallinity of RF-sputtered MoS2 films. J. Mater. Res. 2, 827838 (1987).
23.Jiang, X., Sun, B., Song, Y., Dou, M., Ji, J., and Wang, F.: One-pot synthesis of MoS2/WS2 ultrathin nanoflakes with vertically aligned structure on indium tin oxide as a photocathode for enhanced photo-assistant electrochemical hydrogen evolution reaction. RSC Adv. 7, 49309 (2017).
24.Sarma, S. and Chandra Ray, S.: Trigonal (1T) and hexagonal (2H) mixed phases MoS2 thin films. App. Surf. Sci. 474, 227231 (2019).
25.Kelly, T.F. and Miller, M.K.: Atom probe tomography. Rev. Sci. Inst. 78, 031101 (2007). doi: 10.1063/1.2709758.
26.Boll, T., Al-Kassab, T., Yuan, Y., and Liu, Z.-G.: Investigation of the site occupation of atoms in pure and doped TiA1/Ti3Al intermetallic. Ultramicroscopy 107, 796801 (2007).
27.Boll, T., Zhu, Z.-Y., Al-Kassab, T., and Schwingenschlög, U.: Atom probe tomography simulations and density functional theory calculations of bonding energies in Cu3Au. Microsc. Microanal. 18, 964970 (2012).
28.Geiser, B.P., Kelly, T.F., Larson, D.J., Schneir, J., and Roberts, J.P.: Spatial distribution maps for atom probe tomography. Microsc. Microanal. 13, 437447 (2007).
29.Gault, B., Moody, M.P., de Geuser, F., Tsafnat, G., La Fontaine, A., Stephenson, L.T., Haley, D., and Ringer, S.P.: Advances in the calibration of atom probe tomographic reconstruction. J. Appl. Phys. 105, 34913 (2009).

Related content

Powered by UNSILO
Type Description Title
VIDEO
Supplementary materials

Ramos et al. supplementary material
Ramos et al. supplementary material 1

 Video (37.4 MB)
37.4 MB
WORD
Supplementary materials

Ramos et al. supplementary material
Ramos et al. supplementary material 2

 Word (6.0 MB)
6.0 MB

Study of indium tin oxide–MoS2 interface by atom probe tomography

  • Manuel Ramos (a1) (a2), John Nogan (a3), Torben Boll (a2) (a4), Sandra Kauffmann-Weiss (a2), Claudia A. Rodriguez-Gonzalez (a1), Jose L. Enriquez-Carrejo (a1) and Martin Heilmaier (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.