Skip to main content Accessibility help

Strong exciton–photon coupling in anthradithiophene microcavities: from isolated molecules to aggregates

  • J. D. B. Van Schenck (a1), E. K. Tanyi (a2), L.-J. Cheng (a2), J. Anthony (a3) and O. Ostroverkhova (a1)...


The authors report on strong exciton–photon coupling in all-metal microcavities containing functionalized anthradithiophene (ADT) in host poly(methyl methacrylate) matrices for a wide range of ADT concentrations. Angle-resolved reflectance of polycrystalline films revealed Rabi splittings up to 340 meV. Angle-resolved photoluminescence in films with low ADT concentrations (dominated by “isolated” ADT molecules) showed Rabi splittings which scaled with the square root of oscillator strength. When “aggregated” and “isolated” ADT molecules coexisted in film, cavities preferentially coupled to “isolated” molecules due to an anisotropic distribution of aggregates. As a solution-processable high-performance organic semiconductor, ADT shows promise as an (opto)electronic polaritonic material.


Corresponding author

Address all correspondence to O. Ostroverkhova at


Hide All
1.Ostroverkhova, O.: Organic optoelectronic materials: mechanisms and applications. Chem. Rev. 116, 1327913412 (2016).
2.Holmes, R. and Forrest, S.: Strong exciton-photon coupling in organic materials. Org. Electron. 8, 7793 (2007).
3.Kuehne, A. and Gather, M.: Organic lasers: recent developments on materials, device geometries, and fabrication techniques. Chem. Rev. 116, 1282312864 (2016).
4.Sanvitto, D. and Kéna-Cohen, S.: The road towards polaritonic devices. Nat. Mater. 15, 10611073 (2016).
5.Orgiu, E., George, J., Hutchison, J., Devaux, E., Dayen, J., Doudin, B., Stellacci, F., Genet, C., Schachenmayer, J., Genes, C., Pupillo, G., Samori, P., and Ebbesen, T.W.: Conductivity in organic semiconductors hybridized with the vacuum field. Nat. Mater. 14, 11231130 (2015).
6.Eizner, E., Brodeur, J., Barachati, F., Sridharan, A., and Kena-Cohen, S.: Organic photodiodes with an extended responsivity using ultrastrong light-matter coupling. ACS Photonics 5, 29212927 (2018).
7.Hobson, P., Barnes, W., Lindzey, D., Gehring, G., Whittaker, D., Skolnick, M., and Walker, S.: Strong exciton–photon coupling in a low-Q all-metal mirror microcavity. Appl. Phys. Lett. 81, 3519 (2002).
8.Liu, B., Rai, P., Grezmak, J., Twieg, R., and Singer, K.: Coupling of exciton-polaritons in low-Q coupled microcavities beyond the rotating wave approximation. Phys. Rev. B 92, 155301 (2015).
9.Kena-Cohen, S., Maier, S., and Bradley, D.D.C.: Ultrastrongly coupled exciton-polaritons in metal-clad organic semiconductor microcavities. Adv. Opt. Mater. 1, 827833 (2013).
10.Roux, F. and Bradley, D.D.C.: Conformational control of exciton-polariton physics in metal-poly (9,9-dioctylfluorene)-metal cavities. Phys. Rev. B 98, 195306 (2018).
11.Kena-Cohen, S. and Forrest, S.: Giant Davydov splitting of the lower polariton branch in a polycrystalline tetracene microcavity. Phys. Rev. B 77, 073205 (2008).
12.Kéna-Cohen, S., Davanço, M., and Forrest, S.: Strong exciton–photon coupling in an organic single crystal microcavity. Phys. Rev. Lett. 101, 116401 (2008).
13.Kena-Cohen, S. and Forrest, S.: Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photonics 4, 371375 (2010).
14.Paudel, K., Giesbers, G., Van Schenck, J., Anthony, J., and Ostroverkhova, O.: Molecular packing-dependent photoconductivity in functionalized anthradithiophene crystals. Org. Electron. 67, 311319 (2019).
15.Shepherd, W., Platt, A., Hofer, D., Ostroverkhova, O., Loth, M., and Anthony, J.: Aggregate formation and its effect on (opto)electronic properties of guest-host organic semiconductors. Appl. Phys. Lett. 97, 163303 (2010).
16.Shepherd, W., Platt, A., Kendrick, M., Loth, M., Anthony, J., and Ostroverkhova, O.: Energy transfer and exciplex formation and their impact on exciton and charge carrier dynamics in organic films. J. Phys. Chem. Lett. 2, 362366 (2011).
17.Jurchescu, O.D., Subramanian, S., Kline, R., Hudson, S., Anthony, J., Jackson, T., and Gundlach, D.: Organic single-crystal field-effect transistors of a soluble anthradithiophene. Chem. Mater. 20, 67336737 (2008).
18.Niazi, M., Li, R., Li, E.Q., Kirmani, A., Abdelsamie, M., Wang, Q., Pan, W., Payne, M., Anthony, J., Smilgies, D., Thoroddsen, S., Giannelis, E., and Amassian, A.: Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals. Nat. Commun. 6, 8598 (2015).
19.Paudel, K., Johnson, B., Thieme, M., Haley, M., Payne, M., Anthony, J., and Ostroverkhova, O.: Enhanced charge photogeneration promoted by crystallinity in small-molecule donor-acceptor bulk heterojunctions. Appl. Phys. Lett. 105, 043301 (2014).
20.Ishimura, T., Amashita, K., Anagi, H., and Akayama, M.: Quantitative evaluation of light–matter interaction parameters in organic single-crystal microcavities. Opt. Lett. 43, 10471050 (2018).
21.Platt, A., Kendrick, M., Loth, M., Anthony, J., and Ostroverkhova, O.: Temperature dependence of exciton and charge carrier dynamics in organic thin films. Phys. Rev. B 84, 235209 (2011).
22.Van Schenck, J., Giesbers, G., Kannegula, A., Cheng, L., Anthony, J., and Ostroverkhova, O.: Molecular packing-dependent exciton and polariton dynamics in anthradithiophene organic crystals. MRS Adv. 3, 34653470 (2018).
23.Shepherd, W., Grollman, R., Robertson, A., Paudel, K., Hallani, R., Loth, M., Anthony, J., and Ostroverkhova, O.: Single-molecule imaging of organic semiconductors: toward nanoscale insights into photophysics and molecular packing. Chem. Phys. Lett. 629, 2935 (2015).
24.Savona, V., Andreani, L., Schwendimann, P., and Quattropani, A.: Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes. Solid State Commun. 93, 733739 (1995).
25.Fox, M.: Quantum Optics: An Introduction (Oxford University Press, New York City, 2006).
26.Suzuki, M., Sakata, T., Takenobu, R., Uemura, S., Miyagawa, H., Nakanishi, S., and Tsurumachi, N.: Dye concentration dependence of spectral triplet in one-dimensional photonic crystal with cyanine dye J-aggregate in strong coupling regime. Appl. Phys. Lett. 111, 163302 (2017).
27.Valmorra, F., Broll, M., Schwaiger, S., Welzel, N., Heitmann, D., and Mendach, S.: Strong coupling between surface plasmon polariton and laser dye rhodamine 800. Appl. Phys. Lett. 99, 051110 (2011).
28.Lee, W., Lim, J., Kwak, D., Cho, J., Lee, H., Choi, H., and Cho, K.: Semiconductor-dielectric blends: a facile all solution route to flexible all-organic transistors. Adv. Mater. 21, 42434248 (2009).
29.Ebbesen, T.W.: Hybrid light−matter states in a molecular and material science perspective. Acc. Chem. Res. 49, 2403 (2016).
30.Herrera, F. and Spano, F.C.: Absorption and photoluminescence in organic cavity QED. Phys. Rev. A 95, 053867 (2017).
Type Description Title
Supplementary materials

Van Schenck et al. supplementary material
Van Schenck et al. supplementary material 1

 Word (893 KB)
893 KB

Strong exciton–photon coupling in anthradithiophene microcavities: from isolated molecules to aggregates

  • J. D. B. Van Schenck (a1), E. K. Tanyi (a2), L.-J. Cheng (a2), J. Anthony (a3) and O. Ostroverkhova (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.