Skip to main content Accessibility help
×
Home

Strain-mediated magneto-electric interactions in hexagonal ferrite and ferroelectric coaxial nanofibers

  • Y. Liu (a1) (a2), P. Zhou (a1) (a2), J. Fu (a1) (a3), M. Iyengar (a1), N. Liu (a2), P. Du (a2), Y. Xiong (a4), V. Moiseienko (a1), W. Zhang (a1), J. Zhang (a5), Z. Ma (a2), Y. Qi (a2), V. Novosad (a4), T. Zhou (a3), D. Filippov (a6), T. Zhang (a2), M. E. Page (a7) and G. Srinivasan (a1)...
  • Please note a correction has been issued for this article.

Abstract

This report is on the synthesis by electrospinning of multiferroic core-shell nanofibers of strontium hexaferrite and lead zirconate titanate or barium titanate and studies on magneto-electric (ME) coupling. Fibers with well-defined core–shell structures showed the order parameters in agreement with values for nanostructures. The strength of ME coupling measured by the magnetic field-induced polarization showed the fractional change in the remnant polarization as high as 21%. The ME voltage coefficient in H-assembled films showed the strong ME response for the zero magnetic bias field. Follow-up studies and potential avenues for enhancing the strength of ME coupling in the core–shell nanofibers are discussed.

Copyright

Corresponding author

Address all correspondence to T. Zhang at zhangtj@hubu.edu.cn and G. Srinivasan at srinivas@oakland.edu

References

Hide All
1.Nan, C.: Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 9 (1994).
2.Ryu, J., Priya, S., Uchino, K., and Kim, H.E.: Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J. Elec. 8, 2 (2002).
3.Eerenstein, W., Mathur, N.D., and Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442, 7104 (2006).
4.Ramesh, R. and Spaldin, N.A.: Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21 (2007).
5.Nan, C., Bichurin, M.I., Dong, S., Viehland, D., and Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 3 (2008).
6.Zhai, J., Xing, Z., Dong, S., Li, J., and Viehland, D.: Magnetoelectric laminate composites: an overview. J. Am. Ceram. Soc. 91, 2 (2008).
7.Priya, S., Islam, R., Dong, S., and Viehland, D.: Recent advancements in magnetoelectric particulate and laminate composites. J. Elec. 19, 1 (2007).
8.Srinivasan, G.: Magnetoelectric composites. Annu. Rev. Mater. Res. 40, 153178 (2010).
9.Cui, J., Hockel, J.L., Nordeen, P.K., Pisani, D.M., Liang, C., Carman, G.P., and Lyncha, C.S.: A method to control magnetism in individual strain-mediated magnetoelectric islands. Appl. Phys. Lett. 103, 23 (2013).
10Srinivasan, G., Priya, S., and Sun, N.X.: Composite Magnetoelectrics: Materials, Structures, and Applications, 1st edition (Woodhead Publishing, New York, NY, 2015).
11.Corral-Flores, V., Bueno-Baques, D., Carrillo-Flores, D., and Matutes-Aquino, J.A.: Enhanced magnetoelectric effect in core-shell particulate composites. J. Appl. Phys. 99, 8 (2006).
12.Devan, R.S. and Chougule, B.K.: Effect of composition on coupled electric, magnetic, and dielectric properties of two phase particulate magnetoelectric composite. J. Appl. Phys. 101, 1 (2007).
13.Yang, H., Zhang, G., Lin, Y., Ye, T., and Kang, P.: Electrical, magnetic and magnetoelectric properties of BaTiO3/BiY2Fe5O12 particulate composites. Ceram. Int. 41, 5 (2015).
14.Benveniste, Y.: Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases. Phys. Rev. B 51, 22 (1995).
15.Liu, L.P. and Kuo, H.Y.: Closed-form solutions to the effective properties of fibrous magnetoelectric composites and their applications. Int. J. Solids Struct. 49, 22 (2012).
16.Kuo, H.Y. and Wang, Y.L.: Optimization of magnetoelectricity in multiferroic fibrous composites. Mech. Mater. 50, 8899 (2012).
17.Hu, J., Li, Z., Wang, J., and Nan, C.W.: Electric-field control of strain-mediated magnetoelectric random access memory. J. Appl. Phys. 107, 9 (2010).
18Sun, N.X. and Srinivasan, G.: Voltage control of magnetism in multiferroic heterostructures and devices. In Special Issue on Recent Progress in Spintronic Devices, Vol. 2, edited by Yiming Huai, Pedram Khalili Amiri, and Kang L. Wang (World Scientific Publishing Company, 2012) p. 1240004.
19.Vopson, M.M.: Fundamentals of multiferroic materials and their possible applications. Crit. Rev. Solid State Mater. Sci. 40, 223250 (2015).
20.Leung, C.M., Li, J.F., Viehland, D., and Zhuang, X.: A review on applications of magnetoelectric composites: from heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters. J. Phys. D: Appl. Phys. 51, 263002 (2018).
21.Viehland, D., Wuttig, M., McCord, J., and Quandt, E.: Magnetoelectric magnetic field sensors. MRS Bull. 43, 834840 (2018).
22.Petrov, V.M., Zhang, J., Qu, H., Zhou, P., Zhang, T., and Srinivasan, G.: Theory of magnetoelectric effects in multiferroic core-shell nanofibers of hexagonal ferrites and ferroelectrics. J. Phys. D: Appl. Phys. 51, 28 (2018).
23.Vaz, C., Hoffman, J., Ahn, C.H., and Ramesh, R.: Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 29002918 (2010).
24.Viehland, D., Li, J.F., Yang, Y., Costanzo, T., Yourdkhani, A., Caruntu, G., Zhou, P., Zhang, T., Li, T., Gupta, A., Popov, M., and Srinivasan, G.: Tutorial: product properties in multiferroic nanocomposites. J. Appl. Phys. 124, 061101 (2018).
25.Chen, X.Z., Hoop, M., Shamsudhin, N., Huang, T., Özkale, B., Li, Q., Siringil, E., Mushtaq, F., Di Tizio, L., Nelson, B.J., and Pané, S.: Hybrid magnetoelectric nanowires for nanorobotic applications: fabrication, magnetoelectric coupling, and magnetically assisted in vitro targeted drug delivery. Adv. Mater. 29, 8 (2017).
26.Xie, S., Ma, F., Liu, Y., and Li, J.: Multiferroic CoFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanofibers and their magnetoelectric coupling. Nanoscale 3, 8 (2011).
27.Zhu, Q., Xie, Y., Zhang, J., Liu, Y., Zhan, Q., Miao, H., and Xie, S.: Multiferroic CoFe2O4-BiFeO3 core-shell nanofibers and their nanoscale magnetoelectric coupling. J. Mater. Res. 29, 5 (2014).
28.Sreenivasulu, G., Popov, M., Zhang, R., Sharma, K., Janes, C., Mukundan, A., and Srinivasan, G.: Magnetic field assisted self-assembly of ferrite-ferroelectric core-shell nanofibers and studies on magneto-electric interactions. Appl. Phys. Lett. 104, 5 (2014).
29.Sreenivasulu, G., Zhang, J., Zhang, R., Popov, M., Petrov, V., and Srinivasan, G.: Multiferroic core-shell nanofibers, assembly in a magnetic field, and studies on magneto-electric interactions. Materials 11, 1 (2018).
30.Caruntu, G., Yourdkhani, A., Vopsaroiu, M., and Srinivasan, G.: Probing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by magnetic field-assisted piezoresponse force microscopy. Nanoscale 4, 32183227 (2012).
31.Liu, Y., Zhang, J., Zhou, P., Dong, C., Liang, X., Zhang, W., Zhang, T., Sun, N.X., Filippov, D., and Srinivasan, G.: Magneto-electric interactions in composites of self-biased Y-and W-type hexagonal ferrites and lead zirconate titanate: experiment and theory. J. Appl. Phys. 126, 114102 (2019).
32.Li, J.H., Levin, I., Slutsker, J., Provenzano, V., Schenck, P.K., Ramesh, R., Ouyang, J., and Roytburd, A.L.: Self-assembled multiferroic nanostructures in the CoFe2O4-PbTiO3 system. Appl. Phys. Lett. 87, 072909 (2005).
33.Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A., and Ramesh, R.: Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661663 (2004).
34.Gao, X.S., Rodriguez, B.J., Liu, L., Birajdar, B., Pantel, D., Ziese, M., Alexe, M., and Hesse, D.: Microstructure and properties of well-ordered multiferroic Pb(Zr,Ti)O3/CoFe2O4 nanocomposites. ACS Nano 4, 1099 (2010).
35.Vrejoiu, I., Morelli, A., Biggemann, D., and Pippel, E.: Ordered arrays of multiferroic epitaxial nanostructures. Nano Rev. 2, 7364 (2011).
36.Yang, Y., Priya, S., Li, J., and Viehland, D.: Two-phase coexistence in single-grain BaTiO3-(Mn0.5Zn0.5)Fe2O4 composites, via solid-state reaction. J. Am. Ceram. Soc. 92, 1552 (2009).
37.Bai, F., Zhang, H., Li, J., and Viehland, D.: Magnetic and magnetoelectric properties of as-deposited and annealed BaTiO3-CoFe2O4 nanocomposite thin films. J. Phys. D: Appl. Phys. 43, 285002 (2010).
38.Li, L., Lu, L., Zhang, D., Su, R., Yang, G., Zhai, J., and Yang, Y.: Direct observation of magnetic field induced ferroelectric domain evolution in self-assembled Quasi (0-3) BiFeO3–CoFe2O4 thin films. ACS Appl. Mater. Interfaces 8, 442 (2015).
39.Caruntu, G., Ypurdkhani, A., Vopsaroiu, M., and Srinivasan, G.: Probing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by magnetic field-assisted piezoresponse microscopy. Nanoscale 4, 3218 (2012).
40.Hua, Z.H., Yang, P., Huang, H.B., Wan, J.G., Yu, Z.Z., Yang, S.G., Lu, M., Gu, B.X., and Du, Y.W.: Sol-gel template synthesis and characterization of magnetoelectric CoFe2O4/Pb(Zr0.52Ti0.48)O3 nanotubes. Mater. Chem. Phys. 107, 541546 (2008).
41.Liu, M., Li, X., Imrane, H., Chen, Y.J., Goodrich, T., Cai, Z.H., Ziemer, K.S., Huang, J.Y., and Sun, N.X.: Synthesis of ordered arrays of multiferroic NiFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanowires. Appl. Phys. Lett. 90, 152501 (2007).
42.Pullar, R.C.: Hexagonal ferrite fibres and nanofibres. Solid State Phenom. 241, 168 (2016).
43.Pullar, R.C.: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 11911334 (2012).
44.Pullar, R.C., Taylor, M.D., and Bhattacharya, A.K.: A halide free route to the manufacture of microstructurally improved M ferrite (BaFe12O19 and SrFe12O19) fibres. J. Eur. Ceram. Soc. 22, 12 (2002).
45.Sun, R., Li, X., Xia, A., Su, S., and Jin, C.: Hexagonal SrFe12O19 ferrite with high saturation magnetization. Ceram. Int. 44, 12 (2018).
46.Yuh, J., Nino, J.C., and Sigmund, W.M.: Synthesis of barium titanate (BaTiO3) nanofibers via electrospinning. Mater. Lett. 59, 28 (2005).
47.Wei, Y., Song, Y., Deng, X., Han, B., Zhang, X., Shen, Y., and Lin, Y.: Dielectric and ferroelectric properties of BaTiO3 nanofibers prepared via electrospinning. J. Mater. Sci. Tech. 30, 8 (2014).
48.Miao, Z., Chen, L., Zhou, F., and Wang, Q.: Modulation of resistive switching characteristics for individual BaTiO3 microfiber by surface oxygen vacancies. J. Phys. D: Appl. Phys. 51, 2 (2017).
49.Tang, H., Zhou, Z., and Sodano, H.A.: Relationship between BaTiO3 nanowire aspect ratio and the dielectric permittivity of nanocomposites. ACS Appl. Mater. Interfaces 6, 54505455 (2014).
50.Choi, K.J., Biegalski, M., Li, Y.L., Sharan, A., Schubert, J., Uecker, R., Reiche, P., Chen, Y.B., Pan, X.Q., Gopalan, V., Chen, L.Q., Schlom, D.G., and Eom, C.B.: Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 10051009 (2004).
51.Wang, Z., Pan, X., He, Y., Hu, Y., Gu, H., and Wang, Y.: Piezoelectric nanowires in energy harvesting applications. Adv. Mater. Sci. Eng. 2015, 165631 (2015).
52.Chen, X., Xu, S., Yao, N., Xu, W., and Shi, Y.: Potential measurement from a single lead ziroconate titanate nanofiber using a nanomanipulator. Appl. Phys. Lett. 94, 253113 (2009).
53.Cho, K.H. and Priya, S.: Synthesis of ferroelectric PZT fibers using sol–gel technique. Mater. Lett. 65, 4 (2011).
54.Lee, H.N., Nakhmanson, S.M., Chisholm, M.F., Christen, H.M., Rabe, K.M., and Vanderbilt, D.: Suppressed dependence of polarization on epitaxial strain in highly polar ferroelectrics. Phys. Rev. Lett. 98, 21 (2007).
55.Fan, M., Hui, W., Li, Z., Shen, Z., Li, H., Jiang, A., and Chen, Y.: Fabrication and piezoresponse of electrospun ultra-fine Pb(Zr0.3,Ti0.7)O3 nanofibers. Microelectron. Eng. 98, 371 (1998).
56.Malakooti, M.H., Zhou, Z., and Sodano, H.A.: Enhanced energy harvesting through nanowire based functionally graded interfaces. Nano Energy 52, 171182 (2018).
57.Pullar, R.C., Taylor, M.D., and Bhattacharya, A.K.: Halide removal from BaM (BaFe12O19) and SrM (SrFe12O19) ferrite fibers via a steaming process. J. Mater. Res. 16, 31623169 (2001).
58.Pullar, R.C., Bdikin, I.K., and Bhattacharya, A.K.: Magnetic properties of randomly oriented BaM, SrM, Co2Y, Co2Z and Co2W hexagonal ferrite fibres. J. Eur. Ceram. Soc. 32, 905913 (2012).
59.Liu, M.Q., Shen, X.Q., Meng, X.F., Song, F.Z., and Xiang, J.: Fabrication and magnetic property of M-type strontium ferrite nanofibers by electrospinning. J. Inorg. Mater. 25, 6872 (2010).
60.Muralt, P., Kohli, M., Maeder, T., Kholkin, A., Brooks, K., Setter, N., and Luthier, R.: Fabrication and characterization of PZT thin-film vibrators for micromotors. Sens. Actuat. A: Phys. 48, 157165 (1995).
61.Kajiyoshi, K., Ishizawa, N., and Yoshimura, M.: Preparation of tetragonal barium titanate thin film on titanium metal substrate by hydrothermal method. J. Am. Ceram. Soc. 74, 369374 (1991).
62.Kim, J., Yang, S.A., Choi, Y.C., Han, J.K., Jeong, K.O., Yun, Y.J., Kim, D.J., Yang, S.M., Yoon, D., Cheong, H., Chang, K.S., Noh, T.W., and Bu, S.D.: Ferroelectricity in highly ordered arrays of ultra-thin-walled Pb(Zr,Ti)O3 nanotubes composed of nanometer-sized perovskite crystallites. Nano Lett. 8, 18131818 (2008).
63.Liu, S., Yan, S., Luo, H., Huang, S., Liao, C., and Deng, L.: Magnetic effects on polarization response in particulate magnetoelectric Bi0.5Na0.5TiO3-La0.67Sr0.33MnO3 composites. Mater. Lett. 212, 139 (2018).
64.Lawes, G. and Srinivasan, G.: Introduction to magnetoelectric coupling and multiferroic films. J. Phys. D: Appl. Phys. 44, 243001 (2011).
65.Yang, S.C., Park, C.S., Cho, K.H., and Priya, S.: Self-biased magnetoelectric response in three-phase laminates. J. Appl. Phys. 108, 093706 (2010).
66.Zhou, Y., Maurya, D., Yan, Y., Srinivasan, G., Quandt, E., and Priya, S.: Self-biased magnetoelectric composites: an overview and future perspectives. Energy Harvesting Syst. 3, 42 (2016).
67.Mathe, V.L., Srinivasan, G., and Balbashov, A.M.: Magnetoelectric effects in bilayers of lead zirconate titanate and single crystal hexaferrites. Appl. Phys. Lett. 92, 122505 (2008).

Strain-mediated magneto-electric interactions in hexagonal ferrite and ferroelectric coaxial nanofibers

  • Y. Liu (a1) (a2), P. Zhou (a1) (a2), J. Fu (a1) (a3), M. Iyengar (a1), N. Liu (a2), P. Du (a2), Y. Xiong (a4), V. Moiseienko (a1), W. Zhang (a1), J. Zhang (a5), Z. Ma (a2), Y. Qi (a2), V. Novosad (a4), T. Zhou (a3), D. Filippov (a6), T. Zhang (a2), M. E. Page (a7) and G. Srinivasan (a1)...
  • Please note a correction has been issued for this article.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

A correction has been issued for this article: